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Abstract The paper introducemixed networksa new graphical model framework for ex-
pressing and reasoning with probabilistic and determaisformation. The motivation to
develop mixed networks stems from the desire to fully exploé deterministic informa-
tion (constraints) that is often present in graphical medgkveral concepts and algorithms
specific to belief networks and constraint networks are doeth achieving computational
efficiency, semantic coherence and user-interface coemeai We define the semantics and
graphical representation of mixed networks, and discusdwo main types of algorithms
for processing them: inference-based and search-baseelifmary experimental evalua-
tion shows the benefits of the new model.

1 Introduction

Modeling real-life decision problems requires the speatfan of and reasoning with prob-
abilistic and deterministic information. The primary apach developed in artificial intel-
ligence for representing and reasoning with partial infation under conditions of uncer-
tainty is Bayesian networks. They allow expressing infdfaresuch as “if a person has flu,
he is likely to have fever.” Constraint networks and proposal theories are the most ba-
sic frameworks for representing and reasoning about datestic information. Constraints
often express resource conflicts frequently appearing iedwding and planning applica-
tions, precedence relationships (e.g., “job 1 must follow2") and definitional information
(e.g., “a block is clear iff there is no other block on top dj.itMost often the feasibility
of an action is expressed using a deterministic rule betwhepre-conditions (constraints)
and post-conditions that must hold before and after exegu#n action (e.g., STRIPS for
classical planning).
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The two communities of probabilistic networks and constraetworks matured in par-
allel with only minor interaction. Nevertheless some of éfgorithms and reasoning princi-
ples that emerged within both frameworks, especially thibatare graph-based, are quite
related. Both frameworks can be viewed as graphical mod@lspular paradigm for knowl-
edge representation in general.

Markov random fields (MRF) are another type of graphical nh@denmonly used in
statistical machine learning to describe joint probapidiistributions concisely. Their key
property is that the graph is undirected, leading to isatrop symmetric behavior. This is
also the key difference compared to Bayesian networks,ev@elirected arc carries causal
information. While the potential functions of an MRF areasftassumed to be strictly posi-
tive, and are therefore not meant to handle determinidiitiomships they can be easily ex-
tended to incorporate deterministic potentials with nodngfeany modification. Our choice
however is the Bayesian network due to its appeal in semaelatiity and its representation
of causal and directional information. In fact, our mixedwarks can be viewed not only
as a hybrid between probabilistic and deterministic infation but also as a framework that
permits causal information as well as symmetrical constsai

Researchers within the logic-based and constraint contiesrtiave recognized for
some time the need for augmenting deterministic languagfisumcertainty information,
leading to a variety of concepts and approaches such as paptomic reasoning, prob-
abilistic constraint networks and fuzzy constraint nekgorThe belief networks commu-
nity started more recently to look into mixed representafi®oole(1993), Ngo and Had-
dawy(1997), Koller and Pfeffer(1998), Dechter and LarRD{{1)] perhaps because it is pos-
sible, in principle, to capture constraint information lnit belief networks [Pearl(1988)].

In principle, constraints can be embedded within beliefwogks by modeling each con-
straint as a Conditional Probability Table (CPT). One applnis to add a new variable
for each constraint that is perceived asaffect(child node) in the corresponding causal
relationship and then to clamp its valuettoe [Pearl(1988), Cooper(1990)]. While this ap-
proach is semantically coherent and complies with the &gghph restriction of belief
networks, it adds a substantial number of new variables, thuttering the structure of the
problem. An alternative approach is to designate one of tpenaents of the constraint as
a child node (namely, as its effect). This approach, althawggural for functions (the argu-
ments are the causes or parents and the function variabke éhild node), is quite contrived
for general relations (e.gx+ 6 # y). Such constraints may lead to cycles, which are disal-
lowed in belief networks. Furthermore, if a variable is aldmode of two different CPTs
(one may be deterministic and one probabilistic) the belefvork definition requires that
they be combined into a single CPT.

The main shortcoming, however, of any of the above integmatiis computational.
Constraints have special properties that render them ctatiuoally attractive. When con-
straints are disguised as probabilistic relationshipsr tomputational benefits may be hard
to exploit. In particular, the power of constraint infererend constraint propagation may
not be brought to bear.

Therefore, we propose a framework that combines detertitidiad probabilistic net-
works, calledmixed networkThe identity of the respective relationships, as constsair
probabilities, will be maintained explicitly, so that theéspective computational power and
semantic differences can be vivid and easy to exploit. Thesdhnetwork approach allows
two distinct representations: causal relationships thatd&ectional and normally quanti-
fied by CPTs and symmetrical deterministic constraints. @ioposed scheme’s value is in
providing: 1) semantic coherence; 2) user-interface coievee (the user can relate better
to these two pieces of information if they are distinct); andst importantly, 3) computa-



tional efficiency. The results presented in this paper ased@&n the work in [Dechter and
Mateescu(2004), Dechter and Larkin(2001), Larkin and Bex¢R003)].

The paper is organized as follows: section 2 provides backgt definitions and con-
cepts for graphical models; section 3 presents the frameofomixed networks, provides
motivating examples and extends the notions of conditiam@¢pendence to the mixed
graphs; section 4 contains a review of inference and sedgohitams for graphical mod-
els; section 5 describes inference-based algorithms feednnetworks, based on Bucket
Elimination; section 6 describes search-based algoritfonsnixed networks, based on
AND/OR search spaces for graphical models; section 7 amnthie experimental evalu-
ation of inference-based and AND/OR search-based algesitsection 8 describes related
work and section 9 concludes.

2 Preliminaries and Background

Notations. A reasoning problem is defined in terms of a set of variabl&sgavalues

on finite domains and a set of functions defined over thesahlas. We denote vari-
ables or subsets of variables by uppercase letters §.¥,,..) and values of variables
by lower case letters (e.g,Y,...). Sets are usually denoted by bold letters, for example
X ={Xg,...,%n} is a set of variables. An assignmed & x1, ..., X, = X) can be abbre-
viated asx= ((X1,X1),..., (Xn,Xn)) OF X = (X1,...,%n). FOr a subset of variableg, Dy
denotes the Cartesian product of the domains of variablésThe projection of an assign-
mentx= (Xi,...,Xn) over a subseY is denoted byy orx[Y]. We will also denote by =y
(ory for short) the assignment of values to variable¥ iftom their respective domains. We
denote functions by letterf g, h etc.

Graphical models.A graphical model.# is a 3-tuple,.# = (X,D,F), where: X =
{X1,..., %} is a finite set of variable€) = {D1,...,Dn} is the set of their respective finite
domains of values: = {fy,..., f;} is a set of non-negative real-valued discrete functions,
each defined over a subset of varialfie§ X, called its scope, and denoteddnopé fi). A
graphical model typically has an associated combinati@raipr' ®, (e.g.,® € {[1,,X}
(product, sum, join)). The graphical model represents tiehbination of all its functions:
®{_, fi. A graphical model has an associated primal graph that segpthe structural infor-
mation of the model:

Definition 1 (primal graph) Theprimal graphof a graphical model is an undirected graph
that has variables as its vertices and an edge connects anyatiables that appear in the
scope of the same function. We denote the primal grap@ by(X,E), whereX is the set
of variables andE is the set of edges.

Belief networks.A belief network is a graphical mode# = (X, D, G, P), whereG = (X,E)
is a directed acyclic graph over the variabksThe functionsP = {R} are conditional
probability tables? = {P(X | pa)}, wherepa = scopéR) \ {Xi} is the set ofparentsof
X in G. The primal graph of a belief network obeys the regular dedimj and it can also
be obtained as theoral graphof G, by connecting all the nodes in evepg and then
removing direction from all the edges. When the entries ef@Ts are “0” or “1” only,
they are calledleterministic or functional CPTg he scope oR, is also called théamily of
X (it includesX; and its parents).

1 The combination operator can also be defined axiomaticallgri6(1992)].
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Fig. 1 Belief network

A belief network represents a probability distribution p¥ehaving the product form
Pz(X) = P(X1,....,%)) = "1 P(X; | Xpq ). AN evidence setis an instantiated subset of vari-
ables. The primary query over belief networks is to find thet@aor probability of each
single variable given some evidenggamely to comput®(X;|e). Another important query
is finding themost probable explanatiofMPE), namely, finding a complete assignment to
all the variables having maximum probability given the evident generalization of the
MPE query ismaximum a posteriori hypothes{sAP), which requires finding the most
likely assignment to aubsef hypothesis variables given the evidence.

Definition 2 (ancestral graph)Given a directed grap@, the ancestral graph relative to a
subset of node¥ is the undirected graph obtained by taking the subgraghtbft contains
Y and all their non-descendants, and then moralizing thehgrap

Example 1Figure 1(a) gives an example of a belief network over 6 véemband Figure
1(b) shows its moral graph . The example expresses the cala@dnship between variables
“Season” A), “The configuration of an automatic sprinkler systerB),(“The amount of
expected rain"C), “The amount of necessary manual watering’,(“How wet is the pave-
ment” (F) and “Is the pavement slipperyG). The belief network expresses the probability
distributionP(A,B,C,D,F,G) = P(A) - P(B|A) - P(C|A) - P(D|B,A) - P(F|C,B) - P(G|F).

Constraint networks A constraint network is a graphical mod#l = (X,D,C). The func-
tions are constraint§ = {C;, ...,C; }. Each constraintis a pali = (S,R), whereS C X is

the scope of the relatioR . The relationR; denotes the allowed combination of values. The
primary query over constraint networks is to determine @réhexists a solution, namely,
an assignment to all the variables that satisfies all thet@ints, and if so, to find one. A
constraint network represents the set of all its solutiés.sometimes denote the set of
solutions of a constraint netwotk by ¢ (%).

Example 2Figure 2(a) shows a graph coloring problem that can be mdaeda constraint
network. Given a map of regions, the problem is to color eagion by one of the given col-
ors{red, green, blug such that neighboring regions have different colors. Tdréables of
the problem are the regions, and each one has the dgmeingreen, blug The constraints
are the relatiorfdifferent” between neighboring regions. Figure 2(b) shows the cdnstra
graph, and a solution (A=red, B=blue, C=green, D=greenJiss-=blue, G=red) is given
in Figure 2(a).
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Fig. 2 Constraint network

Propositional theories.Propositional theories are special cases of constraimanks in
which propositional variables which take only two valu¢sue, false} or {1,0}, are de-
noted by uppercase lettePsQ, R. Propositionaliterals (i.e., P,—P) stand forP = true or

P = false and disjunctions of literals, arlauses are denoted byr, B etc. For instance,
a = (PVQVR) is a clause. Aunit clauseis a clause that contains only one literal. The
resolutionoperation over two clausg® v Q) and (3 vV —Q) results in a clauséa Vv 3),
thus eliminatingQ. A formula ¢ in conjunctive normal form (CNF) is a set of clauses
¢ ={a1,...,0} that denotes their conjunction. The setrbdelsor solutionsof a for-
mula ¢, denoted bym(¢), is the set of all truth assignments to all its symbols thahdb
violate any clause.

3 Mixing Probabilities with Constraints

As shown in the previous section, graphical models can apuwmhate both probabilistic
and deterministic information. Probabilistic informatitypically associates a strictly posi-
tive number with an assignment of variables, quantifyingeogectation that the assignment
may be realized. The deterministic information has a diffiéesemantics, annotating assign-
ments with binary values, eithealid or invalid. The mixed network allows probabilistic
information expressed as a belief network and a set of cingdrto co-exist side by side
and interact by giving them a coherent umbrella meaning.

3.1 Defining the Mixed Network

We give here the formal definition of the central concepindfed networksand discuss its
relationship with the auxiliary network that hides the detimistic information through zero
probability assignments.

Definition 3 (mixed networks) Given a belief network# = (X, D, G, P) that expresses the
joint probability P and given a constraint netwodk = (X,D,C) that expresses a set of
solutionsp(#) (or simply p), a mixed network based o and % denoted.#(z 5) =
(X,D,G,P,C) is created from the respective components of the consmaimtork and the
belief network as follows. The variables and their domains are shared, (we could allow
non-common variables and take the union), and the reldtipasnclude the CPTs iR and



the constraints itC. The mixed network expresses the conditional probatfligy(X):

_ [ Pa(x|xep), if xep
P () = {O, otherwise
Clearly,Pg(x| Xe€ p) = P;%?m' By definition, P, (X) = i, P(% | Xps ) whenx e p, and

P 4 (X) =0whenx¢ p. When clarity is not compromised, we will abbrevig¥ D, G, P, C)
by (X,D,P,C) or (X,P,C).

The auxiliary network.The deterministic information can be hidden through aseigmts
having zero probability [Pearl(1988)]. We now define thadfeletwork that expresses con-
straints as pure CPTs.

Definition 4 (auxiliary network) Given a mixed network#| 4 5, we define the auxiliary
networkS # %) to be a belief network constructed by augmentidgvith a set of auxiliary
variables defined as follows. For every constréint (S,Ri) in %2, we add the auxiliary
variableA; that has a domain of 2 values, “0” and “1”. We also add a CPT dyevhose

parent variables are the <t defined by:

o _J1, ifteR
P(A‘_llt)_{a otherwise

S#.%) is a belief network that expresses a probability distritnuBs. It is easy to see that:

Proposition 1 Given a mixed network# 5 ) and its associated auxiliary network=S
S(Lag’%) then:vx P, (X) =Ps(x| A1 =1,...,A =1).

3.2 Queries over Mixed Networks

Belief updating, MPE and MAP queries can be extended to mixeivorks straight-
forwardly. They are well defined relative to the mixed prabghbdistribution P ,. Since
P, is not well defined for inconsistent constraint networks alveays assume that the con-
straint network portion is consistent, namely it expressasn-empty set of solutions. An
additional relevant query over a mixed network is to find thabpbility of a consistent tuple
relative to#, namely determinin@x(x € p(%)). It is calledCNF Probability Evaluation
or Constraint Probability Evaluation (CPENote that the notion of evidence is a special
type of constraint. We will elaborate on this next.

The problem of evaluating the probability of CNF queriesrdweief networks has var-
ious applications. One application is to network reliabiiescribed as follows. Given a
communication graph with a source and a destination, onesgealiagnose the failure of
communication. Since several paths may be available, #sorefor failure can be described
by a CNF formula. Failure means that for all paths (conjung) there is a link on that path
(disjunction) that fails. Given a probabilistic fault modé the network, the task is to assess
the probability of a failure [Portinale and Bobbio(1999)].

Definition 5 (CPE) Given a mixed network#|» ), where the belief network is defined
over variablesX = {Xy,...,X,} and the constraint portion is a either a set of constraints
Z or a CNF formula # = ¢) over a set of subse®® = {Q,...Q;}, whereQ; C X, the
constraint(respectivelyCNF) probability evaluation (CPE) tasis to find the probability
Pz(X€ p(Z)), respectivelyPz(x € m(¢)), wherem(¢) are the models (solutions ¢f).
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Fig. 3 Two-layer network with root not-equal constraints (Java8u

Belief assessment conditioned on a constraint network cat @NF expressiolis the
task of assessingz(X|¢) for every variableX. SinceP(X|¢) = a - P(X A ¢) wherea is a
normalizing constant relative 9%, computingP4(X|¢) reduces to a CPE task ovéf for
the query((X = x) A ¢), for everyx. More generallyP(¢|y) = ay - P(¢ A () whereay is
a normalization constant relative to all the modelgof

3.3 Examples of Mixed Networks

We describe now a few examples that can serve as motivaticontbine probabilities with
constraints in an efficient way. The first type of examplesraad-life domains involving
both type of information whereas some can conveniently Ipeessed using probabilistic
functions and others as constraints. One such area emeitgediro multi-agent environ-
ments. The second source comes from the need to processiniesdc queries over a belief
network, or accommodating disjunctive complex evidenci&iwhan be phrased as a propo-
sitional CNF sentence or as a constraint formula. As a ttasgca pure belief network may
involve deterministic functional CPTs. Those do not présemantical issues but can still
be exploited computationally.

Java bugs.Consider the classical naive-Bayes model or, more gegeeativo-layer net-
work. Often the root nodes in the first layer are desired to beuglly exclusive, a property
that can be enforced bgil-different constraints. For example, consider a bug diagnostics
system for a software application such as Java Virtual Mathat contains numerous bug
descriptions. When the user performs a search for the relévey reports, the system out-
puts a list of bugs, in decreasing likelihood of it being thépcit of the problem. We can
model the relationship between each bug identity and thevaegls that are likely to trigger
this bug as a parent-child relationship of a two-layer beletwork, where the bug identities
are the root nodes and all the key words that may appear inobegptiescription are the child
nodes. Each bug has a directed edge to each relevant key@eed=igure 3). In practice,
it is common to assume that a problem is caused by only oneruithas, the bugs on the
list are mutually exclusive. We may want to express this @sing a not-equal relationship
between all (or some of) the root nodes. We could have takenafahis by putting all the
bugs in one node. However, this would cause a huge inconvesjidaving to express the
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Fig. 4 Mixed network for class scheduling

conditional probability of each key word given each bug,rewhen it is not relevant. Java
bug database contains thousands of bugs. It is hardly $emsidefine a conditional proba-
bility table of that size. Therefore, in the mixed networarfrework we can simply add one
not-equal constraint over all the root variables.

Class schedulingAnother source of examples is reasoning about the behalvar agent.
Consider the problem of scheduling classes for studentsledant knowledge base can be
built from the point of view of a student, of the administaatior of the faculty. Perhaps, the
same knowledge base can serve these multiple reasoningeptves. The administration
(e.q., the chair) tries to schedule the classes so as to heegtious requirements of the
students (allow enough classes in each quarter for eaclestration), while faculty may
want to teach their classes in a particular quarter to masrtor minimize) the attendance
or to better allocate their research vs. teaching time tjinout the academic year.

In Figure 4 we demonstrate a scenario with 3 classes and &rgtuthe variables cor-
responding to the stude® can be repeated to model all the students, but we keep the
figure simple. The dotted lines indicate deterministic tieteships, and the solid arrows
indicate probabilistic links. The variables atenrolled(S,C;j) meaning “studen§ takes
courseC;”; Gradg(S,C;j) denoting the grade (performance) of studgrih courseC;; Past
Gradg§,C;) is the past performance (grade) of studgnn C; (if the class was taken); the
variableProfesso(C;) denotes the professor who teaches the «lasn the current quar-
ter, andTyp€S) stands for a collection of variables denoting studgis characteristics
(his strengths, goals and inclinations, time in the progem). If we have a restriction
on the number of students that can take a class, we can impos&na constraintqlass
Siz€C;) < 10). For each student and for each class, we have a CRGrémte(S,C;) with
the parent nodeBnrolled(S,C;j), Professo(Cj) and TypgS). We then have constraints
between various classes suchEawolled(S,C;) andEnrolled(S,Cy) indicating that both
cannot be taken together due to scheduling conflicts. We Isanhave all-different con-
straints between pairs &o fesso(C;) since the same professor may not teach two classes
even if those classes are not conflicting (for clarity we doexpress these constraints in
Figure 4). Finally, since a student may need to take at leastd2zat most 3 classes, we can
have a variabl&lumberof-Classe$S) that is the number of classes taken by the student.
If a class is a prerequisite to another we can have a consthahlimits the enroliment
in the follow-up class. For example, in the figuBe is a prerequisite to bot8, andCs,
and thereford&nrolled(S;,C;) andPastGrad€(S;,Cs) are connected by a constraint. If the



past grade is not satisfactory, or missing altogether (ingahe class was not taken), then
the enrollment inC, andCg is forbidden. The primary task for this network is to find an
assignment that satisfies all the preferences indicatedeébprbfessors and students, while
obeying the constraints. If the scheduling is done oncesdbdginning of the year for all the
three quarters, the probabilistic information relatedt@deS,Ci) can be used to predict
the eligibility to enroll in follow-up classes during thersa year.

Retail data analysisA real life example is provided by the problem of analyzingg&a
retail transaction data sets. Such data sets typicallyagomhillions of transactions in-
volving several hundred product categories. Each atgilidicates whether a customer
purchased a particular product category or not. Exampldebeasfe product attributes are
sports-coat, rai n-coat, dress-shirt, tie, etc. Marketing analysts are in-
terested in posing queries such as “how many customers gaedha coat and a shirt
and a tie?” In Boolean terms this can be expressed (for exgngsd the CNF query
(sports-coat Vrain-coat )A(dress-shirt vcasual -shirt)Atie. Aquery
expressed as a conjunction of such clauses representscalaautype of prototypical trans-
action (particular combination of items) and the focus isd@tovering more information
about customers who had such a combination of transactesan also have ad prob-
abilistic information providing prior probabilities folose categories, or probabilistic de-
pendencies between them yielding a belief network. Theigsiean then become the CNF
probability evaluation problem.

Genetic linkage analysisGenetic linkage analysis is a statistical method for magppgenes
onto a chromosome, and determining the distance between [(D#(1999)]. This is very
useful in practice for identifying disease genes. Withawithg into the biology details, we
briefly describe how this problem can be modeled as a reagtensk in a mixed network.

Figure 5(a) shows the simplest pedigree, with two parergadted by 1 and 2) and an
offspring (denoted by 3). Square nodes indicate males anksiindicate females. Figure
5(c) shows the usual belief network that models this smaligree for two particular loci
(locations on the chromosome). There are three types dadhlas, as follows. Th& vari-
ables are the genotypes (the values are the specific altelegely the forms in which the
gene may occur on the specific locus), Beariables are the phenotypes (the observable
characteristics). Typically these are evidence varialaled for the purpose of the graphical
model they take as value the specific unordered pair of allekeasured for the individual.
The Svariables are selectors (taking values 0 or 1). The upp@rtgeistands for paternal,
and themfor maternal. The first subscript number indicates the iddial (the number from
the pedigree in 5(a)), and the second subscript numberatediche locus. The interactions
between all these variables are indicated by the arcs in&Bje).

Due to the genetic inheritance laws, many of these reldtipssare actually determinis-
tic. For example, the value of a selector variable deteraiine genotype variable. Formally,
if ais the father and is the mother ok, then:

p QP _ p ; _
Gf,-_{Gaw T%=0 and zm-_{% 5 =0
) m P ) ;
Gy S =1 Gpy SG=1
The CPTs defined above are in fact deterministic, and canitereal by a constraint,

depicted graphically in Figure 5(b). The only real probiakit information appears in the
CPTs of two types of variables. The first type are the selaz;;w'ablessf’j andST‘j. The
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Fig. 5 Genetic linkage analysis

second type are the founders, namely the individuals hawingarents in the pedigree, for
exampleG, andG, in our example.

Genetic linkage analysis is an example where we do not “néegl’'mixed network
formulation, because the constraints are “causal” and aturally be part of the directed
model. However, it is an example of a belief network that aoT® many deterministic or
functional relations that can be exploited as constrairtts.typical reasoning task is equiva-
lent to belief updating or computing the probability of tividkence, or to maximum probable
explanation, which can be solved by inference-based ockdzsed approaches as we will
discuss in the following sections.

3.4 Processing Probabilistic Networks with DeterminismBE queries

In addition to the need to express non-directional con#sain practice pure belief net-
works often have hybrid probabilistic and deterministicTSRs we have seen in the link-
age example. Additional example networks appear in medipalications [Parker and
Miller(1987)], in coding networks [McEliece et al(1998)Hkece, MacKay, and Cheng]
and in networks having CPTs that a&usally independerfiieckerman(1989)]. Using con-
straint processing methods can potentially yield a siggnificomputational benefit and we
can address it using CPE queries as explained next.
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Belief assessment in belief networks having determinismbm translated to a CPE
task over a mixed network. The idea is to collect togethethalldeterministic information
appearing in the functions ¢, namely to extract the deterministic information from the
CPTs, and then transform it all to one CNF or a constraintesgion that will be treated
as a constraint network part relative to the original betiefwork. Each entry in a mixed
CPTP(Xi|pa), havingP(xi|Xps) = 1 (x is a tuple of variables in the family o), can be
translated to a constraint (not allowing tuples with zermbability) or to clausegpg — X,
and all such entries constitute a conjunction of clauseswsttaints.

Let Z = (X,D,G,P) be a belief network having determinism. Given evidercas-
sessing the posterior probability of a single variaklgiven evidence requires computing
P(Xle) = a-P(X Ae). Letcl(P) be the clauses extracted from the mixed CPTs. The deter-
ministic portion of the network is nowl (P). We can write:

P((X=x)Ae) = P((X =x) AeAcl(P)). Therefore, to evaluate the belief ¥f= x we can
evaluate the probability of the CNF formufe= ((X = x) AeAcl(P)) over the original be-
lief network. In this case redundancy is allowed becausessging a deterministic relation
both probabilistically and as a constraint is semantioczdlyd.

3.5 Mixed Graphs as I-Maps

In this section we define thmixed graphof a mixed network and an accompanying sep-
aration criterion, extending d-separation [Pearl(1988)¢ show that a mixed graph is a
minimal I-map (independency map) of a mixed network retatiy an extended notion of
separation, calledm-separation

Definition 6 (mixed graph) Given a mixed network#| 4 5, the mixed graphG , =
(G,D) is defined as follows. Its nodes correspond to the varialpppearing either in
orin %, and the arcs are the union of the undirected arcs in thereamsgraphD of %, and
the directed arcs in the directed acyclic gr&pbf the belief networkZ. The moral mixed
graph is the moral graph of the belief network union the aairst graph.

The notion of d-separation in belief networks is known totoeg conditional inde-
pendence [Pearl(1988)]. Namely any d-separation in thectdid graph corresponds to a
conditional independence in the corresponding probghiiitribution defined over the di-
rected graph. Likewise, an undirected graph representafigprobabilistic networks (i.e.,
Markov random fields) allows reading valid conditional ipdedence based on undirected
graph separation.

In this section we define dm-separatiorof mixed graphs and show that it provides a
criterion for establishing minimal I-mapness for mixedvnetks.

Definition 7 (ancestral mixed graph)Given a mixed grapls_, = (G, D) of a mixed net-
work .7 5 ) WhereG is the directed acyclic graph o8, andD is the undirected constraint
graph of#, the ancestral graph of in G_4 is the grapiD union the ancestral graph ¥f
in G.

Definition 8 (dm-separation) Given a mixed graphG_, and given three subsets of vari-
ablesX, Y andZ which are disjoint, we say tha¢ andY are dm-separated givehin the
mixed graphG_,, denoted< X,Z,Y >qp, iff in the ancestral mixed graph &fuY UZ, all
the paths betweeX andY are intercepted by variables zh
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@ (b) (©)

Fig. 6 Example of dm-separation

The following theorem follows straightforwardly from thercespondence between
mixed networks and auxiliary networks.

Theorem 1 (I-map) Given a mixed network? = .| 4 ) and its mixed graph G, then
G_ 4 is a minimal I-map of # relative to dm-separation. Namely, 4f X,Z,Y >4, then
P+ (X|Y,Z) =P 4(X|Z) and no arc can be removed while maintaining this property.

Proof Assuming< X,Z,Y >qgm we should proveP ,(X|Y,Z) = P ,(X|Z). Namely, we
should prove thaPs(X|Y,Z,A= 1) = Ps(X|Z,A=1) , whenS= S 3 4), andA=1is

an abbreviation to assigning all auxiliary variablesSithe value 1 (Proposition 1). Since
S= S is a regular belief network we can use the ancestral grapérion to deter-
mine d-separation. It is easy to see that the ancestral gfaple directed graph db given
XUYUZUA is identical to the corresponding ancestral mixed graphvéfignore the
edges going into the evidence variabdgsand thus dm-separation translates to d-separation
and provides a characterization of I-mapness of mixed nésvd he minimality of mixed
graphs as I-maps follows from the minimality of belief netk® relative to d-separation
applied to the auxiliary network. O

Example 3Figure 6(a) shows a regular belief network in whiXhandY are d-separated
given the empty set. If we add a constraitsly betweerP andQ, we obtain the mixed net-
work in Figure 6(b). According to dm-separati®nis no longer independent &f, because
of the pathX PQY in the ancestral graph. Figure 6(c) shows the auxiliary ndtywvith vari-
able A assigned to 1 corresponding to the constraint betweand Q. D-separation also
dictates a dependency betwe¢mandy.

We will next see the first virtue of “mixed” network when conned with the “auxiliary”
network. Namely, it will allow the constraint network to beopessed by any constraint
propagation algorithm to yield another, equivalent, wefided, mixed network.

Definition 9 (equivalent mixed networks) Two mixed networks defined on the same set
of variablesX = {Xy, ..., X, } and the same domairBy, ..., Dn, denoted by#1 = .4 5, 4,
and /> = . #,%,), are equivalent iff they are equivalent as probability riisttions,
namely iffP ,, = P 4, (see Definition 3).

Proposition 2 If %1 and%> are equivalent constraint networks (i.e., they have theessen
of solutions), then for any belief netwotk, .7 »,) is equivalent to# ; 4,).

Proof The proof follows directly from Definition 3. ad

The following two propositions show that if we so desire, vam @void redundancy or
exploit redundancy by moving deterministic relations fréfrto % or vice versa.
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Proposition 3 Let.Z be a belief network and (R|pax) be a deterministic CPT that can be
expressed as a constrain(X pa). Let 21 = Z\ P(x|pa). Then.Z 4 o) = M5, c) =
M (5.0)-

Proof All three mixed networks#| z o), -#(, c) and |z, admit the same set of tu-

ples of strictly positive probability. Furthermore, theopabilities of the solution tuples are

defined by all the CPTs o exceptP(x|pay). Therefore, the three mixed networks are
equivalent. O

Corollary 1 Let# = (X,D,G,P) be a belief network anf a set of constraints extracted
fromP. Thens 4 o) = M 5 ).

In conclusion, the above corollary shows one advantageating at mixed networks
rather than at auxiliary networks. Due to the explicit rejgr@ation of deterministic rela-
tionships, notions such as inference and constraint paifagare naturally defined and are
exploitable in mixed networks.

4 Inference and Search for Graphical Models

In this section we review the two main algorithmic approacfer graphical models: in-

ference and search. Inference methods process the agditéimation, derive and record
new information (typically involving one less variablejdiproceed in a dynamic program-
ming manner until the task is solved. Search methods penfeasoning by conditioning on

variable values and enumerating the entire solution spacections 5 and 6 we will show
how these methods apply for mixed deterministic and prdiséibinetworks.

4.1 Inference Methods

Most inference methods assume an ordering of the varigblgtslictates the order in which
the functions are processed. The notiorinsfuced widthor treewidthis central in charac-
terizing the complexity of the algorithms.

Induced graphs and induced widtin ordered graphis a pair(G, d) whereG is an undi-
rected graph, and= Xy, ..., X, is an ordering of the nodes. Thedth of a noden an ordered
graph is the number of the node’s neighbors that precedetieiordering. Thevidth of an
ordering d denotedw(d), is the maximum width over all nodes. Tiveluced width of an
ordered graphw?*(d), is the width of the induced ordered graph obtained as fallowdes
are processed from last to first; when notlés processed, all its preceding neighbors are
connected. Thénduced width of a graphw*, is the minimal induced width over all its
orderings. Thereewidthof a graph is the minimal induced width over all orderings.

Bucket elimination.As an example of inference methods, we will give a short revé

Bucket Elimination, which is a unifying framework for vabie elimination algorithms ap-
plicable to probabilistic and deterministic reasoningrBke and Brioschi(1972), Dechter
and Pearl(1987), Zhang and Poole(1994), Dechter(1996¢ ifiput to a bucket-elimination
algorithm is a knowledge-base theory specified by a set oftimms or relations (e.g.,
clauses for propositional satisfiability, constraintsconditional probability tables for be-
lief networks). Given a variable ordering, the algorithmutjpeons the functions (e.g., CPTs
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Algorithm 1: ELIM-BEL

input : A belief network# = {Pi,...,P,}; an ordering of the variabled; observations.
output : The updated belig?(X; |e), andP(e).
1 Partition%Z into bucket, .. ., buckeg /1 Initialize
2 for p«+— ndownto1ldo /1 Backward
LetA1,A2,...,Aj be the functions iluckep
if buckep, contains evidencepé= xp then
fori«—1to jdo
AssignXp « Xp in A
Move A; to the bucket of its latest variable

else _
L Generate\ P = 3y T, A
Add AP to the bucket of its latest variable

3 return P(X1]e) by normalizing the product ibucket, andP(e) as the normalizing factor.

or constraints) into buckets, where a function is placetiénducket of its latest argument in
the ordering. The algorithm processes each bucket, frontddsst, by a variable elimina-

tion procedure that computes a new function that is placeahiearlier (lower) bucket. For
belief assessment, when the bucket does not have an obseriaule, the bucket procedure
computes the product of all the probability tables and suves the values of the bucket's
variable. Observed variables are independently assignedah function and moved to the
corresponding bucket, thus avoiding the creation of neveddpncies. Algorithm 1 shows
Elim-Bel the bucket-elimination algorithm for belief assessm&he time and space com-
plexity of such algorithms is exponential in the inducedtwi*. For more information see
[Dechter(1999)].

4.2 AND/OR Search Methods

As a framework for search methods, we will use the recenthppsed AND/OR search
space framework for graphical models [Dechter and Matd@867)]. The usual way to do
search (called hef®R searchis to instantiate variables in a static or dynamic ordethkn
simplest case this defines a search tree, whose nodes restges in the space of partial
assignments, and the typical depth first (DFS) algorithmcéiag this space would require
linear space. If more space is available, then some of tiersad nodes can be cached,
and retrieved when encountered again, and the DFS algovithuid in this case traverse a
graph rather than a tree.

The traditional OR search space however does not capturefahg structural prop-
erties of the underlying graphical model. Introduciay D nodes into the search space can
capture the structure of the graphical model by decompdbi@groblem into independent
subproblems. ThAND/OR search spacis a well known problem solving approach de-
veloped in the area of heuristic search, that exploits tleblpm structure to decompose
the search space. The states of an AND/OR space are of twa QRestates which usually
represent alternative ways of solving the problem (diffiékariable values), anAND states
which usually represent problem decomposition into subleras, all of which need to be
solved. We will next present the AND/OR search space for @gggraphical modetvhich
in particular applies to mixed networks. The AND/OR seanghicg is guided by a pseudo
tree that spans the original graphical model.
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(a) Graphical model (b) Pseudo tree (c) Search tree

Fig. 7 AND/OR search tree

Definition 10 (pseudo tree)A pseudo tre®f a graphG = (X, E) is a rooted treeZ having
the same set of node§ such that every edge lis a backarc in7 (i.e., it connects nodes
on the same path from root).

Given a reasoning graphical modet (e.g., belief network, constraint network, influ-
ence diagram) its primal graghand a pseudo tre¢ of G, the associated AND/OR tree is
defined as follows [Dechter and Mateescu(2007)].

Definition 11 (AND/OR search tree of a graphical modelGiven a graphical model/ =
(X,D,F), its primal graphG and a pseudo tre& of G, the associated AND/OR search tree
has alternating levels of OR and AND nodes. The OR nodes bedeldX; and correspond
to variables. The AND nodes are label@d,x;) (or simply x) and correspond to value
assignments. The structure of the AND/OR search tree isgdbase’. The root is an OR
node labeled with the root of”. The children of an OR nod¥; are AND nodes labeled
with assignmentgX;, ;) (or x;) that are consistent with the assignments along the path fro
the root. The children of an AND nod;, ;) are OR nodes labeled with the childrenxf

in . A solution subtre®f an AND/OR search graph is a subtree that: (1) containsoie r
node of the AND/OR graph; (2) if an OR node is in the subtreentbne and only one of
its children is in the subtree; (3) if an AND node is in the sabt then all of its children are
in the subtree; (4) the assignment corresponding to thdisolaubtree is consistent with
respect to the graphical model (i.e., it has a non-zero valtrerespect to the functions of
the model).

Example 4Figure 7 shows an example of an AND/OR search tree. Figuresh@vs a
graphical model defined by four functions, over binary Jalga, and assuming all tuples are
consistent. When some tuples are inconsistent, some ofatifis g1 the tree do not exists.
Figure 7(b) gives the pseudo tree that guides the searah, tip to bottom, as indicated
by the arrows. The dotted arcs are backarcs from the prinaghgrigure 7(c) shows the
AND/OR search tree, with the alternating levels of OR (&ycdnd AND (square) nodes,
and having the structure indicated by the pseudo tree. $rctise we assume that all tuples
are consistent.

The AND/OR search tree for a graphical model specializesntiteon of AND/OR
search spaces for state-space models as defined in [Ni€8f){. The AND/OR search
tree can be traversed by a depth first search algorithm, thing linear space. It was al-
ready shown [Freuder and Quinn(1985), Bodlaender and @ll891), Bayardo and Mi-
ranker(1996), Darwiche(2001), Dechter and Mateescu(R@®thter and Mateescu(2007)]
that:
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(a) Pseudo tree (b) Context minimal graph

Fig. 8 AND/OR search graph

Theorem 2 Given a graphical model# and a pseudo treeZ of depth m, the size of the
AND/OR search tree based dfi is O(n K™), where k bounds the domains of variables. A
graphical model of treewidth fshas a pseudo tree of depth at mostiegn, therefore it has
an AND/OR search tree of sizeOk" 1°9m),

The AND/OR search tree expresses the set of all possiblgrassits to the problem
variables (all solutions). The difference from the traatitil OR search space is that a solu-
tion is no longer a path from root to a leaf, but rather a sghffée AND/OR search tree may
contain nodes that root identical subproblems. These nadesaid to beinifiable When
unifiable nodes are merged, the search space becomes altgagbe becomes smaller at
the expense of using additional memory by the search algoriThe depth first search al-
gorithm can therefore be modified to cache previously coegputsults, and retrieve them
when the same nodes are encountered again.

Some unifiable nodes can be identified based on dwitexts We can define graph
based contexts for the variables by expressing the set @storcvariables in the pseudo
tree that completely determine a conditioned subproblem

Definition 12 (context)Given a pseudo treg of an AND/OR search spacegntex{X) =
[X1...Xp] is the set of ancestors &fin .7, ordered descendingly, that are connected in the
primal graph taX or to descendants of.

Definition 13 (context minimal AND/OR graph) Given an AND/OR search graph, two
OR nodes; andn; arecontext unifiablef they have the same variable labéland the as-
signments of their contexts are identical. Namelyrifs the partial assignment of variables
along the path tm, and 7 is the partial assignment of variables along the pattptdhen
their restriction to the context of is the Samert [contextx) = T&lcontextx)- Thecontext min-
imal AND/OR graph is obtained from the AND/OR search tree by nmeygill the context
unifiable OR nodes.

It was already shown [Bayardo and Miranker(1996), Darwi2861), Dechter and Ma-
teescu(2007)] that:

Theorem 3 Given a graphical model#, its primal graph G and a pseudo treg, the size
of the context minimal AND/OR search graph basedis O(n k¥~ (®)), where Vi, (G) is
the induced width of G over the depth first traversalof and k bounds the domain size.

Example 5For Figure 8 we refer to the model in Figure 7(a), assumingatassignments

are valid and that variables take binary values. Figure Sitayvs the pseudo tree derived
from orderingd = (A, B, E,C, D). The context of each node appears in square brackets, and
the dotted arcs are backarcs. Figure 8(b) shows the conteihal AND/OR graph.
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4.2.1 Weighted AND/OR graphs

In [Dechter and Mateescu(2007)] it was shown how the prdipaldistribution of a given
belief network can be expressed using AND/OR graphs, andchwesies of interest, such
as computing the posterior probability of a variable or thebpbility of the evidence, can
be computed by a depth-first search traversal. All we need &hotate the OR-to-AND
arcs with weights derived from the relevant CPTs, such thaiproduct of weights on the
arc of any solution subtree is equal to the probability of 8wdution according to the belief
network.

Formally, given a belief networks = (X,D,G,P) and a pseudo tre¢, the bucket
of X relative t0.7, denotedB ~(X;), is the set of functions whose scopes contdirand
are included inpaths (%), which is the set of variables from the rootXpin .7. Namely,
Bz (X)) = {P; € P|X € scopgP;),scopé&P;) C path(X)}. A CPT belongs to the bucket of
a variableX; iff its scope has just been fully instantiated whgnwas assigned. Combining
the values of all functions in the bucket, for the currenigresent, gives the weight of the
OR-to-AND arc:

Definition 14 (OR-to-AND weights)Given an AND/OR graph of a belief network, the
weightwn m) (X, %) of arc (n,m) whereX; labelsn andx; labelsm, is thecombinationof
all the CPTs inB4(X) assigned by values along the current path to the AND mad&,.
Formally,Wn,m) (X, Xi) = ®p B, (x) Pj (2Sgr(7in) [sCOp&P; ) ]).

Definition 15 (weight of a solution subtree)Given a weighted AND/OR graph of a belief
network %, and given a solution subtreehaving the OR-to-AND set of ararcs(t), the
weight oft is defined byw(t) = ®ecarcst)W(e).

Example 6Figure 9 shows a weighted AND/OR tree for a belief networgLiré 9(a) shows
the primal graph, 9(b) is the pseudo tree, and 9(c) showsahditional probability tables.
Figure 9(d) shows the weighted AND/OR search tree. Natyrtils tree could be trans-
formed into the context minimal AND/OR graph, similar to te in Figure 8(b).

Value of a node When solving a reasoning task, each node of the AND/OR graptbe
associated with @alue The value could be the number of solutions restricted betmv
node, or the probability of those solutions. Whenever a satiipm is solved, the solution
value is recorded and pointed to by the context assignmeaheafode. Whenever the same
context assignment is encountered again along a diffeatht{ fhe recorded solution value
is retrieved.

Example 7We refer again to the example in Figure 9. Considering a caimsthetwork that
imposes thab = 1 andE = 0 (this can also be evidence in the belief network), the tcdice
the depth first search algorithm without caching (algorithdD-OR-CPE, described later
in Section 6) is given in Figure 10. To make the computatioaightforward, the consistent
leaf AND nodes are given a value of 1 (shown under the squatte)ndhe final value of
each node is shown to its left, while the OR-to-AND weightssitown close to the arcs. The
computation of the final value is detailed for one OR noden@lihe pathA = 0,B = 1,C)
and one AND node (along the path=1,B = 1).

In Sections 5 and 6 we will extend the inference and seardrittigns to solve the CPE
guery over the new framework of mixed networks.
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Fig. 9 Labeled AND/OR search tree for belief networks

P(D=1,E=0) = 24408 (A)

Fig. 10 AND/OR search tree with final node values

5 Inference Algorithms for Processing Mixed Networks

We will focus on the CPE task of computiff¢ ), where¢ is the constraint expression or
CNF formula, and show how we can answer the query using inéeréA number of related
tasks can be easily derived by changing the appropriateatgpge.g. using maximization
for maximum probable explanation - MPE, or summation andimeation for maximum
a posteriori hypothesis - MAP). The results in this secti@tased on the work in [Dechter
and Larkin(2001)] and some of the work in [Larkin and Dec{2e03)].

5.1 Inference by Bucket Elimination

We will first derive a bucket elimination algorithm for mixegtworks when the determin-
istic component is a CNF formula and latter will show how ihggalizes to any constraint
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expression. Given a mixed network| 4 ), whereg is a CNF formula defined on a subset
of variablesQ, theCPE task is to compute:

Pad)= Y P
Xgemodelgd)

Using the belief network product form we get:

P() = P ¥a -
{)?[)TQen%delssqb)} il:l P

We assume thaX, is one of the CNF variables, and we separate the summatiorXgesd
X\ {Xn}. We denote by the set of all clauses that are definedrand byf3, all the rest
of the clauses. The scope gfis denoted byQ,, we defineS, = X\ Q, andUj, is the set of
all variables in the scopes of CPTs and clauses that are defireX,,. We get:

P() = ﬁﬂMm%

{Xn—1/Xs, €model$pn) } {*nlXqn egodelssw)} i

Denoting byt, the set of indices of functions in the product tidatnotmentionX, and by
lh={1,...,n}\ty we get:
P(¢) = > ne- 3 P
{Xn_1|Xg,€model$Bn)} i€t {%n|XqnEemodelgyn)} J€ln
Therefore:
PO)= 3 ([]R)A*
{Xn—1/Xg, €model$pn)} I€tn

whereA* is defined ovel, — {X}, by

)

A = S L (1)
{Xn|Xg,€model$yn)} j€ln

The case of observed variabled/henX, is observed, or constrained by a literal, the sum-
mation operation reduces to assigning the observed valaadb of its CPTsindto each

of the relevant clauses. In this case Equation (1) beconsssifaeX, = X, and Py, is the
function instantiated by assigning to Xp):

A= I_l Py I Xy €M A (X =Xn)). )

j€ln

Otherwise,A™ = 0. Sincexg, satisfiesyy A (Xn = xn) only if Xg,-x, satisfiesy =
resolveé yn, (Xn = Xn)), we get:

W= [ B 11 Kon €M) 3)
J€ln
Therefore, we can extend the case of observed variable itugahavay: CPTs are assigned
the observed value as usual while clauses are individuaiplved with the unit clause
(Xnh = Xn), and both are moved to appropriate lower buckets.

In general, when we dont have evidence in the buckét,ofve should computé *1.
We need to collect all CPTs and clauses mentior¥acand then compute the function
in Equation (1). The computation of the rest of the exprespimceeds withX,_1 in the
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Algorithm 2: ELIM-CPE

input  : A belief network% = {Py, ...,Pn}; a CNF formula ork propositionsp = {a1,...am}
defined ovek propositions; an ordering of the variablels= {Xy,...,Xn}.
output : The beliefP(¢).

1 Place buckets with unit clauses last in the ordering (to begssed first). // Initialize
Partition and¢ into bucket, ... ., bucket, wherebucket contains all the CPTs and clauses
whose highest variable .

Put each observed variable into its appropriate bucketSLet, S be the scopes of the CPTs,
andQq, ...Qr be the scopes of the clauses. (We denote probabilisticitumechyA s and clauses
by as).

2 for p+« ndown to 1do /1 Backward

L LetAy,...,Aj be the functions andy, ..., a; be the clauses ibuckep,
Process- bucket p(3, (A1,...,A)),(a1,...,ar))

3 return P(¢) as the result of processitmicket.

ProcedurePr ocess- bucket p({, (A1,...,A}) J(01,...,0¢))

if buckep, contains evidencepé= Xp (or a unit clausehen
1. AssignX, = xp to eachij and put each resulting function in the bucket of its latest
variable
2. Resolve eachj with the unit clause, put non-tautology resolvents in thekiets of their
| latest variable anthove any bucket with unit clause to top of processing

else

| Add AP to the bucket of the latest variableliy, whereUp = Uij:13 UZ1 Qi — {Xp}

same manner. This yields algorithElim-CPE described in Algorithm 2 with Procedure
Pr ocess- bucket ,. The elimination operation is denoted by the general opesgimbol
| that instantiates to summation for the current query.

For every ordering of the propositions, once all the CPTs @dadses are partitioned
(each clause and CPT is placed in the bucket of the latestblarin their scope), the algo-
rithm process the buckets from last to first. It process eackédt as eitheevidence buckeif
we have a unit clause (evidence), or dsraction computatiobucket, otherwise. Lets, ... A;
be the probabilistic functions in buckBtover scopes,,...,S andas,...a; be the clauses
over scope€, ..., Q;. The algorithm computes a new functiafl overUp =SUQ— {Xp}
whereS=U;§, andQ = U;Qj, defined by:

AP = 5 M )
b
From our derivation we can already conclude that:

Theorem 4 (correctness and completenesgjgorithm Elim-CPE is sound and complete
for the CPE task.

Example 8Consider the belief network in Figure 11 and the qugrt (BVC) A (GVD) A
(=D Vv —B). The initial partitioning into buckets along the orderidg= A,C,B,D,F,G, as
well as the output buckets are given in Figure 12. We compute:

In bucketG: A G( f s d) = Z{g\gvd:true} P(g| f)

In bucketF:  AF(b,c,d) =5 P(f|b,c)AC(f,d)



21

(a) Directed acyclic graph (b) Moral graph
Fig. 11 Belief network
Bucket G: P(G|F,D) (GLD) Bucket G: P(G|F,D) (GLD) ﬂe\
Bucket F: P(F|B,C) A°(F,D) Bucket D: P(DIAB) (- Dm D

Bucket D: P(DJAB) (-DC-B) S A'(B,C,D)  BucketB: P(B|A),P(FIB,C), (BLC) .B)*-B
Bucket B: P(B|A) (BCC) “A°(AB,C) Bucket C;/ P(C|A)

Bucket C: P(C|A)  A%(AC) Bucket F:\ A°(F)

Bucket A: P(A) (A Bucket A:  A(A)  A(A) (A A
P(¢) P(#)
Fig. 12 Execution of EIM-CPE Fig. 13 Execution of EiM-CPE (evidence-G)

In bucketD: /\D(ab) z{dhdvﬁb_tme} P(d|a,b)AF (b,c,d)

In bucketB:  AB(a,C) = 3 (hjbve-true; P(b|2)AP(a, b, c)AF (b,c)
In bucketC: ( a)=7Y¢ (c\a))\ B(a,c)
In bucketA: =5SaP(@AC(a)

A

The result |5P(¢) A
For exampleA G(f,d = O) = P(g=1|f), because ifl = 0 g must get the value “1”, while
ACG(f,d=1)=P(g=0|f) +P(g=1|f).

Note that some saving due to constraints can be obtainea¢imfeaction computation.
Consider the bucked that has functions over 4 variables. Brute force computatiould
require enumerating 16 tuples, because the algorithm Haskat all possible assignments
of four binary variables. However since the processing khbe restricted to tuples where
b andd cannot both be true, there is a potential for restrictingctvaputation to 12 tuples
only. We will elaborate on this more later when discussirgyse function representations.

We can exploit constraints in Elim-CPE in two ways followitige two cases for pro-
cessing a bucket either as evidence-bucket, or as a furobimputation bucket.

Exploiting constraints in evidence bucketAlgorithm Elim-CPE is already explicit in how
it takes advantage of the constraints when processing deré bucket. It includes a unit
resolution step whenever possible (see ProceBluoeess- bucket p) and a dynamic re-
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ordering of the buckets that prefers processing bucketsrtblide unit clauses. These two
steps amount to applyingnit propagatiorwhich is known to be a very effective constraint
propagation algorithm for processing CNF formulas. This/rhave a significant compu-

tational impact because evidence buckets are easy to grdesause unit propagation in-
creases the number of buckets that will have evidence aralibedreating unit clauses as
evidence avoids the creation new dependencies. To fulthstrate the possible impact of

inferring unit clauses we look at the following example.

Example 9Let's extend the example by addir@s to our earlier query. This will placeG

in the bucket ofG. When processing buck&, unit resolution creates the unit claube
which is then placed in buck€&. Next, processing buckeét creates a probabilistic function
on the two variableB andC. Processing buck& that now contains a unit clause will assign
the valueD to the CPT in that bucket and apply unit resolution, genegatie unit clause
=B that is placed in buckd®. Subsequently, in buck&we can apply unit resolution again,
generatindC placed in bucke€, and so on. In other words, aside from bucketwve were
able to process all buckets as observed buckets, by propagfat observations. (See Figure
13.) To incorporate dynamic variable ordering, after psstay buckeG, we move bucket
D to the top of the processing list (since it has a unit clauBagn, following its processing,
we process buckd® and then buckeE, thenF, and finallyA.

Exploiting constraints in function computation. Sometimes there is substantial determin-
ism present in a network that cannot yield a significant arhefiunit clauses or shrink
the domains of variables. For example, consider the case wigenetwork is completely
connected with equality constraints. Any domain value foy single variable is feasible,
but there are still onlyk solutions, wherek is the domain size. We can still exploit such
constraints in the function-computation. To facilitatessttve may need to consider different
data structures, other than tables, to represent the CRTidus.

In [Larkin and Dechter(2003)] we focused on this aspect @l@kng constraints. We
presented the bucket-elimination algorithm caliguin-Sparsedor the CPE query, that uses
a sparse representation of the CPT functions as a relatp@tif®ally, instead of recording
a table as large as the product of the domain sizes of all thables, a function is main-
tained as a relation of non-zero probability tuples. In theve example, with the equality
constraints, defining the function as a table would requitabée of sizek" wheren is the
number of variables in the scope of the function, but amtyk tuples of sizen each) as
a relation. Efficient operations to work with these funci@are also available. These are
mainly based on the Hash-Join procedure which is well-knowttatabase theory [Korth
and Silberschatz(1991)] as described in [Larkin and De(2063)].

In Elim-Sparse, the constraints are absorbed into thetigaldased) CPTs (e.g., in a
generalized arc-consistency manner) and then relatigmedators can be applied. Alter-
natively, one can also devise efficient function-compatagprocedures using constraint-
based search schemes. We will assume the sparse functi@seatation explicitly in the
constraint-based CPE algorithieim-ConsPE(i}described in section 5.2.2.

5.2 Extensions of Elim-CPE

Unit propagation and any higher level of constraint proicessan also be applied a priori
on the CNF formula before we apply Elim-CPE. This can yietdrsger CNF expressions
in each bucket with more unit clauses. This can also imprbedunction computation in
non-evidence buckets. Elim-CPE(i) is discussed next.
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5.2.1 Elim-CPE(j)

One form of constraint propagation is bounded resolutiastjRnd Dechter(2000)]. It ap-
plies pair-wise resolution to any two clauses in the CNF th&b6the resolvent size does not
exceed a bounding parameterBounded-resolution algorithms can be applied until quies
cence or in a directional manner, callBBR(i). After partitioning the clauses into ordered
buckets, each one is processed by resolution relative toutiet's variable, with bounid

This suggests extending Elim-CPE into a parameterizedlyaofiialgorithms Elim-
CPH(i) that incorporate8DR(i). All we need is to include ProceduBDR( i) described
below in the “else” branch of the ProcediReocess- bucket .

Procedure BDR( i)

if the bucket does not have an observed varidinés
for each pair{(a v Qj),(BVv —Qj)} C bucke} do
L if the resolveny = a U 8 contains no more than i propositiotisen
| place the resolvent in the bucket of its latest variable

5.2.2 Probability of Relational Constraints

When the variables in the belief network are multi-valudée, deterministic query can be
expressed using a constraint expression with relationedatprs. The set of solutions of a
constraint network can be expressed using the join operHEberjoin of two relationdRag
and Rgc denotedRag X Rgc is the largest set of solutions ovarB,C satisfying the two
constraintfRag andRgc. The set of solutions of the constraint expresside: {Ry,...R} is
sol(#) =mt_; R.

Given a belief network and a constraint expressi®we may be interested in computing
P(x e sol(#)). A bucket-elimination algorithm for computing this taskaisimple general-
ization of Elim-CPE, except that it uses the relational apens as expressed in Algorithm 4.
Algorithm Elim-ConsPE uses the notion of arc-consistenhictvgeneralizes unit propaga-
tion and it is also parameterized to allow higher levels oéclionali-consistency (DIC(i))
[Dechter(2003)], generalizinBDR(i) (see step 1 of the "else” part of tipeocess-bucket-rel
procedure). The algorithm assumes sparse function repegsn and constraint-exploiting
computation for the bucket-functions.

Clearly, in both Elim-CPH) and its generalized constraint-based version Elim-
ConsPEHEi), higher levels of constraint propagation may desirablgrimhore unit and non-
unit clauses. They may also require more computation hawaewe it is hard to assess in
advance what level of will be cost-effective. It is known that the complexity BDR(i)
andDIC(i) areO(exp(i)) and therefore, for small levels othe computation is likely to be
dominated by generating the probabilistic function rathan byBDR(i).

Moreover, whether or not we use high level of directional sistency to yield more
evidence, a full level of directional consistency is ackianyway by the function compu-
tation. In other words, the set of positive tuples generateghch bucket’s function compu-
tation is identical to the set of consistent tuples that Wdwdve been generated by full di-
rectional consistency (also known adaptive-consistenayr directional-consistengywith
the same set of constraints. Thus, full directicrabnsistency is not necessary for the sake
of function computation. It can still help inferring sigmifintly more unit clauses (evidence)
over the constraints, requiring a factor of 2 at the mosthergrocessing of each bucket.
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Algorithm 4: ELIM -CONSPE

input  : A belief network% = {P,...,Ph} whereR’s are assume to have a sparse
representation; A constraint expression dveariables,Z = {Rg,,...,Rg } an
orderingd = {Xg,..., %0}

output : The beliefP(Z).

1 Place buckets with observed variables ladl ifto be processed first) /1 Initialize
Partition 2 and.Z into bucket, . .. ,bucket, wherebucket contains all CPTs and constraints
whose highest variable }§

LetS,,...,Sj be the scopes of the CPTs, a4, ...Q; be the scopes of the constraints.
We denote probabilistic functions s and constraints bigs
2 for p+« ndown to 1do /1 Backward
L LetAy,...,Aj be the functions anBy, ..., R: be the constraints ibuckep
Process-bucket - RELp(S, (A1,..-,A)).(Re,...,R))

3 return P(Z) as the result of processitmickes.

ProcedurePr ocess- bucket - RELp( |}, (A1,...,4) ,(Ry,---,Ry))

if buckep, contains evidencepé= xp then
1. AssignX;, = xp to each}; and put each resulting function in the bucket of its latest
variable
2. Apply arc-consistency (or any constraint propagatiomer ¢he constraints in the bucket.
Put the resulting constraints in the buckets of their latagtible andnove any bucket

| with single domain to top of processing

else

1. Apply directionaii-consistency (DIC(i))

2. Generatd P = 3 xplipesiRj} Mi_1 Ai with specialized sparse operations or search-based

methods. .
| Add AP to the bucket of the latest variablelily, whereUp = Ui‘:ls U1 Qi — {Xp}

5.3 Complexity

As usual, the worst-case complexity of bucket eliminatitgoethms is related to the num-
ber of variables appearing in each bucket, both in the scopgsobability functions as
well as in the scopes of constraints [Dechter(1999)]. Thestwoase complexity is time
and space exponential in the maximal number of variablesbncket, which is captured
by the induced-width of the relevant graph. Therefore, thegexity of Elim-CPE and
Elim-ConsPE i9O(r - expgw*)), wherew* is the induced width of the moral mixed ordered
graph and is the total number of functions [Kask et al(2005)Kask, Dech_arrosa, and
Dechter]. In Figure 14 we see that while the induced widthhefmoral graph of the belief
network is just 2 (Figure 14(a)), the induced width of the edbgraph of our example is 3
(Figure 14(b)).

We can refine the above analysis to capture the role of camistia generating unit
clauses by constraint propagation. We can also try to cayier power of constraint-based
pruning obtained in function computation. To capture tineification associated with ob-
served variables, we will use the notion ofagjusted induced grapfhe adjusted induced
graph is created by processing the variables from last tafithe given ordering and con-
necting the parents of each non-observed variables, ohtya@justed induced width is the
width of the adjusted induced-graph. Figure 14(c) showsdttjested induced-graph relative
to the evidence-G. We see that the induced width, adjusted for this obsenvaisjust 2
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@ (b) ©
Fig. 14 Induced graphs: (a) moral graph; (b) mixed graph; (c) adjudted-G) graph

(Figure 14(c)). Notice that adjusted induced-width can bmputed once we observe the
evidence set obtained as a result of our propagation ahgorin summary:

Theorem 5 ([Dechter and Larkin(2001)])Given a mixed network# , of a belief network
over nvariables, a constraint expression and an orderinglgorithm Elim-CPE is time and
space Qn-expgw*,(0))), where W, (o) is the width along o of the adjusted moral mixed
induced graph.

Capturing in our analysis the efficiency obtained when ekplp constraints in
function-computation is harder. The overall complexitypeeds on the amount of deter-
minism in the problem. If enough is present to yield smathtiehal CPTs, it can be fairly
efficient, but if not, the overhead of manipulating nearly} fuple lists can be larger than
when dealing with a table. Other structured function repméggtions, such as decision trees
[Boutilier et al(1996)Boutilier, Friedman, GoldszmidhdKoller] or rule-based systems
[Poole(1997)] might also be appropriate for sparse reptatien of the CPTs.

6 AND/OR Search Algorithms For Mixed Networks

Proposition 2 ensures the equivalence of mixed networkaelkfy one belief network and
by different constraint networks that are equivalent (tleat have the same set of solutions).
In particular, this implies that we can process the detestiminformation separately (e.g.,
by enforcing some consistency level, which results in atéigtepresentation), without los-
ing any solution. Conditioning algorithms (search) offematural approach for exploiting
constraints. The intuitive idea is to search in the spaceadig) variable assignments, and
use the wide range of readily available constraint proogstEchniques to limit the actual
traversed space. We will describe the basic principles éncitntext of AND/OR search
spaces [Dechter and Mateescu(2007)]. We will first des¢hibAND-OR-cPEAlgorithm.
Then, we will discuss how to incorporate in AND-O&PE techniques exploiting deter-
minism, such as: (1) constraint propagation (look-ahg@jihackjumping and (3) good and
nogood learning.
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Algorithm 5: AND-OR-CPE
input  : A mixed network.#Z = (X,D,G,P,C); a pseudo treeZ of the moral mixed graph,
rooted atX;; parentspa (OR-context) for every variabl¥; caching set totrue or
false
output : The probabilityP(x € p(#)) that a tuple satisfies the constraint query.
1 if caching ==truethen /1 Initialize cache tables
2 L Initialize cache tables with entries of-1”
3 v(X1) < 0; OPEN « {X;} /1 Initialize the stack OPEN
4 while OPEN # ¢ do
5 n < top(OPEN); removen from OPEN
6 if caching ==trueandn is OR, labeled Xand Cachéasgn(m)[pa]) # —1then// If
in cache
7 v(n) < Cachéasgn(m)[pa]) /1l Retrieve val ue
8 successor®) «— @ /1 No need to expand bel ow
9 else /| Expand search (forward)
10 if n is an OR node labeled; Xhen /1 OR-expand
successol®) «— Const r ai nt Propagat i on((X,D,C),asgnm))
11
/1 CONSTRAINT PROPAGATION
v({(X,x))— [ f(asgrim)[pa]), forall (X;,x) € successors)
12 L feB7 (%)
13 if n is an AND node labele¢X;, x;) then /'l AND- expand
14 successoi@®) < childrens (X)
15 | V(X) < OforallX € successors)
16 | Add successors) to top of OPEN
17 while successoi@) == ¢ do /| Update values (backtrack)
18 if nis an OR node labeled; Xhen
19 if X; == Xy then /'l Search is conplete
20 | return v(n)
21 if caching ==truethen
22 | Cachdasgr(m)[pa]) < Vv(n) /1 Save in cache
23 let p be the parent o
24 V(p) < V(p) *V(n)
25 if v(p) == 0then /1 Check if pis dead-end
26 removesuccessor®) from OPEN
27 successor®) — ¢
28 if nis an AND node labele@X;,x;) then
29 let p be the parent of
30 | V(p) — V(p) +V(n);
31 removen from successorp)
32 | n—p

6.1 AND-OR-creAlgorithm

Algorithm 5, AND-OR-CPE, presents the basic depth-first traversal of the AND/ORcsear
tree (or graph, if caching is used) for solving the CPE taslr avmixed network. The al-
gorithm is similar to the one presented in [Dechter and Mate€007)]. The input is a
mixed network, a pseudo tre# of the moral mixed graph and the context of each vari-
able. The output is the probability that a random tuple gateer from the belief network
distribution satisfies the constraint query. AND-QREtraverses the AND/OR search tree
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ProcedureConst r ai nt Pr opagati on( %, X)

input : A constraint network? = (X, D, C); a partial assignment pa#to variableX;.

output :reduced domail; of X;; reduced domains of future variables; newly inferred
constraints.

This is a generic procedure that performs the desired leveddtraint propagation, for

example forward checking, unit propagation, arc consistener the constraint network’ and

conditioned ong.

return reduced domain of X

P((AVC)A(BV1E)A(BVD))=.74204 (a)
6

Fig. 15 Mixed network defined by the quefy= (AVC) A (BV-E) A (BVD)

or graph corresponding t§" in a DFS manner. Each node maintains a valwehich ac-
cumulates the computation resulted from its subtree. OR®@adcumulate the summation
of the product between each child’s value and its OR-to-AN&ght, while AND nodes
accumulate the product of their children’s values. For mnfermation see [Dechter and
Mateescu(2007)].

Example 10We refer back to the example in Figure 9. Consider a constraitwork that
is defined by the CNF formulg = (AVC) A (BV —E) A (BV D). The trace of algorithm
AND-OR-cpPEwithout caching is given in Figure 15. Notice that the cla(s#& C) is not

satisfied ifA = 0 andC = 0, therefore the paths that contain this assignment carnpati

of a solution of the mixed network. The value of each node @wshto its left (the leaf
nodes assume a dummy value of 1, not shown in the figure). Tlhe wéthe root node is
the probability of¢. Figure 15 is similar to Figure 10. In Figure 10 the evidenaa be

modeled as the CNF formula with unit claud2s —E.

The following theorems are implied immediately from the g properties of
AND/OR search algorithms [Dechter and Mateescu(2007)].

Theorem 6 Algorithm AND-OR-cPEis sound and exact for the CPE task.

Theorem 7 Given a mixed network# with n variables having domain sizes bounded by
k and a pseudo tre# of depth m of its moral mixed graph, the time complexitAdfD-
OR-cpPewith no caching is On-k™), while the space required is linear. A mixed network of
treewidth w has an AND/OR search tree whose size (@x@(w* - logn)).

6.2 Constraint Propagation in AND-ORBPE

As we already observed, Proposition 2 provides an impojtestification for using mixed
networks as opposed to auxiliary networks. The constraintign can be processed by a
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wide range of constraint processing techniques, bottcatbtibefore search or dynamically
during search [Dechter(2003)].

We discuss here the use of constraint propagation durimgtsealso known as look-
ahead. This is a well known idea used in any constraint or ®Mes In general, constraint
propagation helps to discover (using limited computatiohat variable and what value to
instantiate next. The incorporation of these methods orfddND/OR search is straight-
forward. For illustration, we will only consider a staticniable ordering, based on a pseudo
tree.

In  Algorithm AND-OR-cpg, line 11 contains a call to the generic
Constrai nt Propagati on procedure consulting only the constraint subnetwork
Z, conditioned on the current partial assignment. The camgtpropagation is relative
to the current set of constraints, the given path that defimesurrent partial assignment,
and the newly inferred constraints, if any, that were ledrdaring the search. Using a
polynomial time algorithmConst r ai nt Pr opagat i on may discover some variable
values that cannot be extended to a full solution. Theseegdluthe domain of a variables
are marked as inconsistent and can be removed from the tulvemain of the variable.
All the remaining values are returned by the procedure asl gaodidates to extend the
search frontier. Of course, not all the values returne@dayst r ai nt Pr opagat i on are
guaranteed to lead to a solution.

We therefore have the freedom to employ any procedure fakihg the consistency of
the constraints of the mixed network. The simplest case snwio constraint propagation
is used, and only the initial constraints@fare checked for consistency, and we denote this
algorithm by AO-C.

In the empirical evaluation, we used two forms of constrpiopagation on top of AO-
C. The first, yielding algorithm AO-FC, is based @orward checking which is one of
the weakest forms of propagation. It propagates the effeatvalue selection to each fu-
ture uninstantiated variable separately, and checksstensly against the constraints whose
scope would become fully instantiated by just one such éxtariable.

The second algorithm we used is called AO-RFC, and performssiant ofrelational
forward checking Rather than checking only constraints whose scope becésttesas-
signed, AO-RFC checks all the existing constraints by Ingkat their projection on the
current path. If the projection is empty an inconsistenagetected. AO-RFC is computa-
tionally more expensive than AO-FC, but its search spaceniler.

SAT solvers.One possibility that was explored with success (e.g., fAllEnd Dar-
wiche(2003)]) is to delegate the constraint processingseparate off-the-shelf SAT solver.
In this case, for each new variable assignment the conspaition is packed and fed into
the SAT solver. If no solution is reported, then that value iead-end. If a solution is found
by the SAT solver, then the AND/OR search continues (remertitzg for some tasks we
may have to traverse all the solutions of the graphical matethe one solution found by
the SAT solver does not finish the task). The worst-case oaxitplof this level of constraint
processing, at each node, is exponential.

The popular variant afinit propagatiorthat was exploited in Elim-CPE can be effective
here too. This can also be implemented by the unit resol@r@ine of an available SAT
solver. Such hybrid use of search and a specialized effi§amt(or constraint) solver can
be very useful, and it underlines further the power that thesthnetwork representation has
in delimiting the constraint portion from the belief netior
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(e) Maintaining arc consistency

Fig. 16 Traces of AND-ORepPEwith various levels of constraint propagation

Example 11Figure 16(a) shows the belief part of a mixed network, andifeidl6(b) the
constraint part. All variables have the same dom#in2,3,4, and the constraints express
“less than” relations. Figure 16(c) shows the search spb8&©eC. Figure 16(d) shows the
space traversed by AO-FC. Figure 16(e) shows the space vamsistency is enforced with
Maintaining Arc Consistency (which enforces full arc-cistency after each new instantia-
tion of a variable).

6.3 Backjumping

Backjumping algorithms [Gaschnig(1979), Prosser(1982)yardo and Miranker(1996),
Dechter(2003)] are backtracking search algorithms agpliethe OR space, which uses
the problem structure to jump back from a dead-end as far aaplossible. They have been
known for a long time in the constraint processing commurkityr probabilistic models,
backjumping is very useful in the context of determinism.

In graph-based backjumpin@BJ) each variable maintains a graph-based induced an-
cestor set which ensures that no solutions are missed byingniyack to its deepest vari-
able. If the ordering of the OR space is a DFS ordering of tli@adrgraph, it is known
[Dechter(2003)] that all the backjumps are from a variablgg DFS parent. In [Mateescu
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Fig. 17 Graph-based backjumping and AND/OR search

and Dechter(2005)] it was shown that this means that a silNIB/OR search automat-
ically incorporates graph-based backjumping, when theigséree is a DFS tree of the
primal graph.

When the pseudo tree is not a DFS tree of the primal graphitrappen that the parent
of a node in the pseudo tree is not the node where graph-baskflitnping would retreat in
the case of OR search. An example is provided in Figure 1ur€ij7a shows a graphical
model, 17b a pseudo tree and 17c a chain driving the OR se@agligwn). If a dead-end
is encountered at variable 3, graph-based backjumpingatstto 8 (see 17c), while simple
AND/OR would retreat to 1, the pseudo tree parent. When thd-@&d is encountered at 2,
both algorithms backtrack to 3 and then to 1. Therefore, thsases, augmenting AND/OR
with a graph-based backjumping mechanism can provide sopeiement.

We want to emphasize that the graph-based backjumping lehsin most cases in-
trinsic to AND/OR search. The more advanced and compuiatiomtensive forms of con-
flict directed backjumping [Prosser(1993), Dechter(2D@8) not captured by the AND/OR
graph, and can be implemented on top of it by analyzing thetcaimt portion only.

6.4 Good and Nogood Learning

When a search algorithm encounters a dead-end, it can dseediftechniques to identify
the ancestor variable assignments that caused the deadadled a conflict-set. It is con-
ceivable that the same assignment of that set of ancestiables may be encountered in
the future, and they would lead to the same dead-end. Rétaerédiscovering it again, if
memory allows, it is useful to record the dead-end conflttas a new constraint (or clause)
over the ancestor set that is responsible for it. Recordiregieend conflict-sets is sometimes
called nogood learning.

One form of nogood learning is graph-based, and it uses the sechnique as graph-
based backjumping to identify the ancestor variables thaetate the nogood. The informa-
tion on conflicts is generated from the primal graph infoiioraglone. Similar to the case
of backjumping, it is easy to see that AND/OR search alreadyiges this information in
the context of the nodes. Therefore saving the informatlwutthe nogoods encountered
amounts to graph-based nogood learning in the case of OBrsear

If deeper types of nogood learning are desirable, they nedd tmplemented on top
of the AND/OR search. In such a case, a smaller set than thextasf a node may be
identified as a culprit assignment, and may help discoveréudead-ends much earlier than
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when context-based caching alone is used. Needless toesgylehrning is computationally
more expensive and it can be facilitated via a focus on thstcaint portion of the mixed
network.

Traversing the context-based AND/OR graph can be undatsisdearning (and sav-
ing) not only the nogoods but also their logical counterpattegoods(namely the consis-
tent assignments). This is a feature that was proposed @ntgears by several schemes
[Darwiche(2001), Sang et al(2004)Sang, Bacchus, BeamtzKand Pitassi, Dechter and
Mateescu(2007)]. This is in fact the well known techniqueathing that became appeal-
ing recently due to the availability of computer memory, wiiee task to be solved requires
the enumeration of many solutions. The idea is to store theevaf a solved conditioned
subproblem, associating it with a minimal set of ancestsigasnents that are guaranteed
to root the same conditioned subproblem, and retrieve tdaewvhenever the same set of
ancestor assignments is encountered again during search.

7 Empirical Evaluation

In this section we present an empirical evaluation of therigrice and AND/OR search
methods discussed in the previous sections.

Exploiting determinism in BE vs. search.We do not advocate here that one type of al-
gorithms is better than the other. In fact, as an extensiahefesults in [Mateescu and
Dechter(2005)], it can be shown that search and infereneenageneral incomparable,
when both are equipped with determinism exploiting toolkelLAND/OR search, bucket-
elimination that uses sparse function representation eahdwn to also traverse the context
minimal AND/OR graph, but in a different direction and as$ugra different control strat-
egy. Inference is bottom up and breadth first, while AND/ORrek is top down and depth
first. As a result, we can imagine mixed networks where therdghism reveals itself close
to the root of the pseudo tree, making the job of AND/OR seasdier, while Bucket Elim-
ination has to traverse all the layers bottom up, only toalisc that most of the messages it
has processed contain invalid tuples. Another examplelchdw the opposite: if the deter-
minism is closer to the leaves of the pseudo tree, then tHerpgance of the two methods
is reversed.

We should emphasize again that in making this claim aboatémnfce we assume that the
CPTs use a sparse representation. In practice the impaetesfisinism would be manifested
in generating tight functions that are sent from one buakatbther. If we consider the case
discussed after Example 8, a full table representatiorofaribinary variables would contain
16 tuples, but a restriction to only the valid tuples mightabeelational representation for
only 12 of them.

Because, as explained, inference and search are in genesaiparable, we will offer
an experimental evaluation of each type separately, etiadihe advantages of expressing
and exploiting the constraint portion separately as patti@mixed network framework.

7.1 Inference Algorithms

We compared empirically five algorithms: (1) Elim-CPE (whis the same as Elim-CPE(0),
which does no constraint propagation except for unit prapag); (2) Elim-CPE(i); (3)
Elim-CPE-D (which derives CNF clauses from mixed CPTs arhthpplies Elim-CPE);
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Fig. 18 Random networks; 48 instances; network parameteé88,4,0.75 > and query parametes0,10>

Table 1 Insurance network (27 variables); 50 test instances; queergmeters< 20,5 >

[ Algorithm [Tme [mf[ C.JU. [ F ]
Elim-CPE-D: 48 8 210 | 1 302
Elim-CPE(15):| 64 | 9 | 12 | 1 | ©
EFm-CPEQ). | 61 | 9 | 6 | 0| ©
Elim-Hidden: 104 | 10 0 0 0

(4) Elim-Hidden (this algorithm expresses each clause aP® @ith a new hidden vari-
able, adds evidence to the hidden nodes and performs trableaglimination algorithm).
All these algorithms assume that the CPTs are implementéabées, with no sparse rep-
resentation. The fifth algorithm we tested is Elim-Sparse tlses a sparse relational rep-
resentation of the CPTs. We tested the algorithms on sondonametworks, as well as
realistic networks: Insurance, Water, Mildew, Hailfind&tuninl and Diabetes. All algo-
rithms use min-degree order, computed by repeatedly rergdyie node with the lowest
degree from the graph and connecting all its neighbors. Foenmformation see [Dechter
and Larkin(2001)].

The generator of random networks that we used is dividedanpiarts. The first creates
a random belief network using a tuplen, f.d > as a parameter, whereis the number
of variables,f is the maximum family size, andlis the fraction of deterministic entries in
CPTs. Parents are chosen at random from the preceding lesriaba fixed ordering. The
entries of the CPTs are filled in randomly. The second partigees a 3-CNF query using a
pair of parameters: c,e > wherec is the number of 3-CNF clauses (clauses are randomly
chosen and each is given a random truth value)eindhe number of observations.

We first show a comparison of Elim-CPE-D and Elim-CPE on soamglom networks,
in Figure 18. As mentioned before, the difference betweernwo algorithms is that Elim-
CPE-D extracts deterministic information from CPTs. Theufiggshows a scatter plot of
running times measured in seconds. The results show that&rg deterministic informa-
tion is beneficial on these instances.

We tested the algorithms on the Insurance network, whichrisafistic network for
evaluating car insurance risks that contains determinisformation. It has 27 variables.
In the experiments reported in Table 1, Elim-CPE-D outpenkxd Elim-CPE substantially.
Figure 19 contrasts Elim-CPE with Elim-Hidden on the Insweanetwork.

We also tried the Hailfinder network, another benchmark tiast 56 variables and in-
cludes deterministic information. It is a normative systéat forecasts severe summer hail
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Table 2 Hailfinder network (56 variables); 50 test instances; quemameters< 15,15 >

[ Algorithm [Tme [mf[ C. JU. | F ]
Elim-CPE-D: 4 4 1269 | 1 | 501
Elim-CPE(15): | 16 6 7 1 0
Elim-CPE(0): 16 6 7 1 0
Elim-Hidden: 33 7 0 0 0

® ///
400 — >
300 e
Elim- nas
Hidden 200 ¢ /.//
100 — e
0 ‘\l T T 1
0 100 200 300 400
Elim-CPE(0)
Fig. 19 Insurance network; 50 test instances; query parametéis5 >
Table 3 Average Times
[ Network T EB] ECJ] ES[ BIS] CIs]
Insurance 3.56 1.05 | 0.24 | 14.83 4.38
Water 4.65 3.22 | 0.29 | 16.03 | 11.10
Mildew 7.64 451 | 094 8.15 4381
Hailfinder 1.99 1.14 | 0.99 2.01 1.15
Muninl 15.92 3.58 | 0.84 | 18.95 4.26
Diabetes 18.77 | 12.20 | 9.67 1.94 1.26

in northeast Colorado. The results are reported in Tablee2e ldgain the results are con-
sistent with earlier observations that Elim-CPE-D was tlestefficient. In both of these
networks we have determinism created by the network anduaeyq

We also present here some results that include the algoEtfirmSparse [Larkin and
Dechter(2003)], where the CPTs are represented in re&tiorm, by storing only the valid
tuples. Table 3 shows a comparison of Elim-Bel (EB), ElimEC{EC) and Elim-Sparse
(ES). We generated 50 random queries for each networkngesie three algorithms on
each. The last two columns show the ratio of times of Elim#Bdtlim-Sparse (B/S), and
of Elim-CPE to Elim-Sparse (C/S). Elim-Sparse was consiolgr faster than Elim-CPE
on Insurance, Water, Mildew, and Muninl (by a factor of 4 or@)pbut less so on Hail-
finder and Diabetes (less than twice as fast). In general-Efparse is more efficient than
Elim-CPE especially with increasing determinism. Howetleg high constant factor due to
manipulation of tuple lists may prove to be too big an ovediea low determinism.
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Table 4 AND/OR Search Algorithms (1): random networks; induced Witl®; pseudo tree depth 19; aver-
ages taken over 20 instances

[ N=40, K=2, R=2, P=2, C=10, S=4, 20 instances, w*=12, h=19 |

t i Time Nodes (*1000) Dead-ends (*1000) #sol
AO- AO- AO-

C FC RFC C FC RFC C FC RFC

20 0 0.671 0.056 0.022 153 4 1 95 3 1 2E+05
3 0.619 0.053 0.019 101 3 1 95 3 1
6 0.479 0.055 0.022 75 3 1 57 3 1
9 0.297 0.053 0.019 52 3 1 10 3 1
12 0.103 0.044 0.016 17 2 1 3 2 0

40 0 2.877 0.791 1.094 775 168 158 240 40 36 || 8E+07
3 2.426 0.663 0.894 330 57 52 240 40 36
6 1.409 0.445 0.544 183 35 32 107 28 24
9 0.739 0.301 0.338 119 24 21 20 12 10
12 0.189 0.142 0.149 28 9 7 3 4 3

60 0 6.827 4.717 7427 || 1,975 | 1,159 | 1,148 362 163 159 || 6E+09
3 5.560 3.908 6.018 673 351 346 362 163 159
6 2.809 2.219 3.149 347 184 180 151 89 86
9 1.334 1.196 1.535 204 106 102 19 25 23
12 0.255 0.331 0.425 36 23 22 3 5 5

80 0 14.181 | 14.199 | 21.791 || 4,283 | 3,704 | 3,703 370 278 277 || 1E+11
3 11.334 | 11.797 | 17.916 || 1,320 | 1,109 | 1,107 370 278 277
6 5.305 6.286 9.061 626 519 518 128 98 97
9 2.204 2.890 3.725 336 274 273 17 21 20
12 0.318 0.543 0.714 44 40 40 1 3 3

100 0 23.595 | 27.129 | 41.744 || 7,451 | 7,451 | 7,451 0 0 0 1E+12
3 19.050 | 22.842 | 34.800 || 2,161 | 2,161 | 2,161 0 0 0
6 8.325 | 11.528 | 16.636 957 957 957 0 0 0
9 3.153 4.863 6.255 484 484 484 0 0 0
12 0.366 0.681 0.884 51 51 51 0 0 0

7.2 AND/OR Search Algorithms

We provide here an evaluation of AND/OR search algorithmgrixed networks. We ran
our algorithms on mixed networks generated randomly umifpmgiven a number of input
parametersN - number of variable - number of values per variablg;- number of root
nodes for the belief networle - number of parents for a CPT, - number of constraints;

S - the scope size of the constraints; the tightness (percentage of the allowed tuples
per constraint). (N,K,R,P) defines the belief network andK(R,S,t) defines the constraint
network. We report the time in seconds, number of nodes elqgthand number of dead-
ends encountered (in thousands), and the number of camtsigpdes of the mixed network
(#sol). In tablesw* is the induced width ant is the height of the pseudo tree.

We compared four algorithms: 1) AND-ORPE, denoted here AO-C; 2) AO-FC and
3) AO-RFC (described in previous section); 4) BE - buckenalation (which is equivalent
to Elim-Bel) on the auxiliary network; the version we usedBi is the basic one for be-
lief networks, without any constraint propagation and aoystraint testing, namely we did
not use the Elim-cpe type algorithms that exploit deteremmiWe tried different levels of
caching for the AND/OR algorithms, denoted in the tables fiybound, this is the maxi-
mum scope size of the tables that are storeg)0 stands for linear space search. Caching
is implemented based on context as described in Section 6.

Tables 4, 5, and 6 show a comparison of the linear space ahdhgaadgorithms explor-
ing the AND/OR space with varying levels of constraint prgatéon. We ran a large number
of cases and this is a typical sample. Notice that the donzénisincreased t& = 3.
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Table 5 AND/OR Search Algorithms (2): random networks; induced wigl8 and 41; pseudo tree depth 38
and 51; averages over 20 instances

t i Time [ Nodes (*1000) | Dead-ends (*1000) | #sol
[AO-FC | AORFC | AO-FC | AO-RFC | AOFC | AO-RFC |

N=100, K=2, R=10, P=2, C=30, S=3, 20 instances, w*=28, h=38

10 0 1.743 1.743 15 15 15 15 0
10 1.748 1.746 15 15 15 15
20 1.773 1.784 15 15 15 15

20 0 3.193 3.201 28 28 28 28 0
10 3.195 3.200 28 28 28 28
20 3.276 3.273 28 28 28 28

30 0 69.585 62.911 805 659 805 659 0
10 69.803 62.908 805 659 805 659
20 69.275 63.055 805 659 687 659

N=100, K=2, R=5, P=3, C=40, S=3, 20 instances, w*=41, h=51

10 0 1.251 0.382 7 2 7 2 0
10 1.249 0.379 7 2 7 2
20 1.265 0.386 7 2 7 2

20 0 22.992 15.955 164 113 163 111 0
10 22.994 15.978 162 110 162 111
20 22.999 16.047 162 110 162 110

30 0 | 253.289 43.255 2093 351 2046 304 0
10 | 254.250 42.858 2026 283 2032 289
20 | 253.439 43.228 2020 278 2026 283

Table 6 AND/OR Search vs. Bucket Elimination; random networks; ages over 20 instances

t i Time Nodes (*1000) Dead-ends (*1000) [ #sol
BE [ AO-FC | AO-RFC | AO-FC | AO-RFC | AO-FC | AO-RFC
N=70, K=2, R=5, P=2, C=30, S=3, 20 instances, w*=22, h=30

40 0| 264 2.0 1.3 49 21 35 19 0
10 19 1.2 30 18 29 18
20 1.9 1.3 26 17 21 16

50 0 30.7 35.6 2,883 2,708 1,096 1,032 | 1E+12
10 18.6 18.9 557 512 342 302
20 12.4 12.1 245 216 146 130

60 0 396.8 511.4 | 51,223 50,089 | 13,200 12,845 | 7E+14
10 167.9 182.5 5,881 5,708 2,319 2,241
20 80.5 83.6 1,723 1,655 718 697

N=60, K=2, R=5, P=2, C=40, S=3, 20 instances, w*=23, h=31

40 0] 67.3 0.7 0.6 9 9 8 7 0
10 0.6 0.6 6 5 5 5
20 0.6 0.6 5 5 4 4

50 0 3.2 3.0 58 55 41 38 | 6E+04
10 3.0 2.8 31 28 28 25
20 2.7 2.6 25 23 20 18

60 0 65.2 70.2 2,302 2,292 1,206 1,195 | 8E+08
10 54.1 56.4 791 781 660 649
20 39.6 40.7 459 449 319 309

Table 4 shows a medium sized mixed network, across the fufjg@f tightness for the
constraint network. For linear spade< 0), we see that more constraint propagation helps
for tighter networkst(= 20), AO-RFC being faster than AO-FC. As the constraint netwo
becomes loose, the effort of AO-RFC does not pay off anymidfieen almost all tuples
become consistent, any form of constraint propagationtisost effective, AO-C being the
best choice in such caseds= 80,100). For each type of algorithm, caching improves the
performance. We can see the general trend given by the bolefig

Table 5 shows results for large mixed networks & 28,41). These problems have
an inconsistent constraint portion=£ 10,20,30). AO-C was much slower in this case, so
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we only include results for AO-FC and AO-RFC. For the smatietwork (v = 28), AO-
RFC is only slightly better than AO-FC. For the larger om&é & 41), we see that more
propagation helps. Caching doesn't improve either of tigerdthms here. This means that
for these inconsistent problems, constraint propagasiablie to detect many of the nogoods
easily, so the overhead of caching cancels out its benefitg (mgoods can be cached for
inconsistent problems). Note that these problems aresiiflesfor brute-force BE that does
not include constraint propagation, due to high inducedtwitihey may still be feasible for
Elim-CPE(i) or Elim-Sparse though.

Table 6 shows a comparison between search algorithms ane-forge BE. All in-
stances fot < 40 were inconsistent and the AO algorithms were much falséar BE, even
with linear space. Betwednr= 40— 60 we see that BE becomes more efficient than AO, and
may be comparable only if AO is given the same amount of spa&ta

There is an expected trend with respect to the size of thersad space and the dead-
ends encountered. We see that the more advanced the congtogagation technique, the
less nodes the algorithm expands, and the less dead-emuitrgers. More caching also
has a similar effect.

7.3 AND/OR Solution Counting

We present here results on pure constraint networks, faaghkeof solution counting. While
this may seem to bias our mixed representation to an extrdraagsults are in fact very
relevant for processing mixed networks. The amount of cdatfmn (number of nodes ex-
plored in the AND/OR space) is the same as in the case whergénetwork would exist
on top of the constraint network. The only missing part herthé computation of proba-
bilities (or weights) corresponding to partial assignrseiistead, we compute a count of
the solutions. These results also show a comparison of AIR¥€arch with the traditional
type of OR search that does not exploit problem structurédbigivs a chain pseudo tree.

Tables 7 and 8 show an ample comparison of the algorithms alerate size problems
which allowed bucket elimination to run. The bolded time ters show the best values
in each column. The most important thing to note is the vas¢sarity of AND/OR space
over the traditional OR space. Only for the very tight protet = 10%— 40%), which are
also inconsistent, the two search spaces seem to be corgdrab picture is clearer if we
look at the number of expanded nodes and number of dead-@éfft=s the problems are
loose and have a large number of solutions AND/OR algorithresorders of magnitudes
better (see#n, #dbolded figures foi=9 in Table 7, and foi=13 in Table 8, where A/O
FC explores a space two orders of magnitude smaller tharofif@R FC, resulting in a
time two orders of magnitude smaller). In Table 7 we also keémpact of more constraint
propagation. The RFC algorithms always explore a smalkeesthan the FC, but this comes
with an overhead cost, and may not always be faster. For BEnlyereport time, which is
not sensitive to the tightness of the problem, so we see ¢haght networks search can be
faster than BE, if BE is insensitive to determinism. Cleaalgomparison with Elim-CPE(i)
or Elim-Sparse may show a different picture.

Caching doesn’'t seem to play a big role in this first set of [mwis. Especially, for
inconsistent networks, caching doesn’t improve perforreaihis is probably because the
type of networks we generate turn out to be fairly easy fovéod checking, so even without
caching the nogoods of the inconsistent networks, forwhettking is able to easily detect
them.
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Table 7 AND/OR search vs. OR search vs. Bucket Elimination; randotwaiks; averages over 20 instances

N=20, K=3, C=20, S=4, 20 instances, w*=9, h=14 ]

l
[ t I 10%][] 20%]] 30%][ 40%][ 50%!][ 60%!][ 70%]
[ #solutions || off o[ off 49][ 3,847 126,957] 2,856,064
[ Time (seconds) |
[ [BE [[0.1011q] 0.10159] 0.1011§] 0.1002§] __ 0.1000(] 0.0897q] 0.08805
i=0[A/O FC 0.0065(0( 0.0125(¢ 0.0245( 0.06555 0.2294( 1.09355 5.81740Q
AJO RFC|| 0.00350] 0.01005| 0.02555| 0.07660Q 0.2749(¢ 1.33295 6.94850
ORFC 0.00505| 0.0120qQ| 0.0275 0.08670 0.5262( 5.49720 65.68779
ORRFC]| 0.0040Q| 0.0125 0.0280(0| 0.0987(Q 0.5604(Q 5.7263 67.94275
i=3|A/O FC 0.0055@0( 0.0121(¢ 0.02555 0.06410 0.22925 1.09505 5.79485
A/O RFCI| 0.003040| 0.0130§ 0.0255( 0.0781( 0.2785( 1.33705 6.90190
ORFC 0.00555| 0.0125Q] 0.02750| 0.08765 0.52405 5.48500 65.83190
ORRFC]| 0.0040Q| 0.01000| 0.0281(Q| 0.0982Q 0.5640(0 5.7288 67.9852
i=6[A/O FC [ 0.0050(] 0.01254] 0.02405] 0.06455 0.2137( 0.91375 4.33874
A/O RFCI| 0.00500[ 0.0110(¢ 0.0275( 0.07555 0.2593( 1.09625 5.08375
ORFC 0.0045(0| 0.0125(¢ 0.0296( 0.0886( 0.4992( 4.66985 49.77530
OR RFC{| 0.0030q| 0.01050| 0.03200| 0.09809 0.53625 4.8752( 51.2491Q
i=9[A/OFC [ 0.00455] 0.01155] 0.02504] 0.06405 0.1724(Q 0.48865 1.22135
AJORFC|| 0.00450] 0.0095(| 0.0260Q| 0.07310Q 0.2053(Q 0.5883( 1.4626
ORFC 0.0055(0| 0.01355 0.0295( 0.0816( 0.40010 2.9898( 23.39555
OR RFC || 0.0045Q0| 0.0115d 0.03020 0.09415 0.43620 3.15515 24.25300
[ Number of expanded nodes (#n) / Number of dead-ends (# d) ]
#n| #d|| #n| #d|| #n| #d|| #n| #d #n| #d #n #d #n #d

i=0[A/O FC [[225]453]|518|1032||1192] 2330|| 3552| 6579|| 16003 24402/[ 106651 119059| 735153 55382(
AJO RFC|[154]311[[387| 771[[1052]2056[|3407|6307||1573723987|| 106617118989 735153 553820
OR FC [|225[453[|519]|1040|| 1203| 2408|| 3810| 7476|| 28079 44634|| 414463 448055 | 6533674 4499159
OR RFC || 154]311[|387| 777]|1062|2126|| 3664| 7183|| 27801| 44078]| 414428 447986]| 6533674 4499159

i=3|A/O FC [|225]|453||518]1032|| 1192| 2330|| 3552 6579|| 16003 24402]| 106651/ 119059| 735153 55382(Q
AJO RFC||154]311[[387| 771||1052|2056(|3407|6307|| 15737/ 23987|| 106617118989 735153 55382(
OR FC [|225[453[|519]|1040|| 1203| 2408]|| 3810| 7476|| 28079 44634|| 414463 448055 | 6533674 4499159
OR RFC[|154]311[|387| 777||1062|2126|| 3664| 7183|| 27801 44078|| 414428 447986 | 6533674 4499159

i=6|A/O FC [|224]|451]|512]|1021]|1162| 2285|| 3306 6269|| 12765 21129|| 70273 88589|| 436554 368111
AJO RFC|[154[311[|384] 765[[1028]2019|| 3175/6012[| 12562/ 20776|| 70238 88519| 436554 368111
ORFC [[225]453]|519]1040]| 1203] 2408]| 3764| 7418]] 24700] 41194][ 294525 349350[393107§ 306892(
OR RFC [[154]311]|387] 777][1062] 2126|| 3618] 7124]] 24422 40638][ 294491] 349281][ 3931079 306892(

i=9|A/O FC [[224]449]|499| 978[[1093|2112]|[2883|5288|| 8873[14193| 28038 33210 79946 60144
AJO RFC|[153]308[[371] 722|| 962|1857||2761]5063|| 8705/13899|] 28003 33141]] 79946 60144
ORFC [[225]453]|518]1032][ 1192] 2333][ 3604 6874]] 18729 30992][ 166912 203854 151697§ 125912(
OR RFC[[154]311]| 387 771][1052] 2058][ 3461] 6597|] 18457 30477|[ 166877 2037841516974 125912(

Table 9 shows an example where caching is useful. This isagaimaller problem for
which A/O FC could be run even far= 100%. When problems become loose, caching is
essential to speed up the search.

8 Related Work

The idea of combining probabilistic information with detenistic relationships is funda-
mental, and has been explored in different communities gdsave already mentioned in the
introduction and throughout the paper. In the following sediions we present the related
work structured along two directions: 1) languages thatlwomlogic and probabilities; 2)
computational issues of processing mixed probabilistit@eterministic information.
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Table 8 AND/OR search vs. OR search vs. Bucket Elimination; randotwaiks; averages over 20 instances

N=40, K=3, C=50, S=3, 20 instances, w*=13, h=20 |

l
I [ 10%] 20%] 30%][| 20%]| 50%][] 60%)
[ #solutions || off off off off 46582 147898575
[ Time (seconds) |
[ [BE [ 8674 8714 8889 _ 8.709] 8.531]] 8.637]
=0 [WOFC|[ 0.011] 0030]  0.110] _ 0.454] 3.129] 32.93]
[ORFC|[ 0009 0.03Y] 0.13] _ 0.517 14.615] 9737.823
=3 [AJOFC|[[ 0011 0031 011 _ 0.453] 3.103] 31.277
[ORFC|| 0009] 0030] _0.112]  0509] 14474 9027.365
i=6 [WMOFC][ 0.011] 0.029]  0.110] _ 0.454] 3.008]] 25.140
[ORFC|[ 0010] 0.032] 0113 _ 0.508] 13.842] 7293472
=9 [AIOFC[[ 0.010] 0.030] _ 0.114] _ 0.453] 2.895] 21558
[ORFC|| 0010] 0031 _ 0.11f] _ 0509] 12.336] 5809.917
=I3[A/OFC|[ 0011 0030  OIL1]] _ 0.457] 2.605]| 11.974
[ORFC[[ 0010] 0032 0123 0.494| 8.703 1170.203
[ Number of expanded nodes (#n) / Number of dead-ends (# d) |
#n| #d[| #n| #d|| #n| #d|| #n| #d #n #d #n #d
=0 [AJO FCJ| 78] 159][265[533[| 999 1994][4735/9229|| 6016310113 160167 171194
[ORFC | 78] 159]] 265]533][ 1000| 2003[| 4947[9897|[ 273547407350 38412080732454590
=3 [AJO FC|[ 78] 159]| 265]533|] 986]1090]|4525[0166]] 46763 98413 689154 1625079
[OR FC || 78] 159]| 265|533][ 1000 2003([ 4947 9897]| 224739 399210 228667363 287701079
[ATO FC|| 78] 159][265[533]] 981 1971|4467 8991]] 41876 85583 487320 917612
[OR FC “ 78[ 159“ 265[ 533“ 1000[ 2003“ 4947[ 9897“ 185422{ 329754“ 14161099Q20815906$

i=0 [AJO FC|| 78] 159][265]533|] 981]1058][4451[8866]] 37314 70337 362024 58032

OR FC || 78] 159]| 265] 533|| 1000 2003|| 4947[9897]| 147329 270446 102316417 13565535
i=13[AJO FC|[ 78] 159]|265[533|] 981 1055][4415[8533]] 30610 50228 170827 181157
[ORFC || 78]159][ 265533|| 999] 1994|4761 9283]| 99923176630 16210028 20018823

!
’|6
|
™

Table 9 The impact of caching (A/O FC); random networks; averages 2@énstances

[ N=40, K=2, C=40, S=3, 20 instances, w*=10, h=17 |

t [ 10%] 20%] 30%| 40%| 50%| 60%] _ 70%] 80%] 90%] 100%]

[ #sol | 0] O] O] 0] 0]135332,414,724190,430,00021,549,650,0001,099,511,627,776

Time
A/O FC| i=0]0.000]0.001{0.002{0.005/0.011| 0.065| 0.289 1.931 7.979 30.094
i=310.001]0.002[0.0020.003[0.008 0.060 0.253] 1.525] 6.062] 22.340
i=6[0.001/0.001]0.004] 0.003|0.009 0.052 0.182] 0.883] 2.873] 8.847
i=10[0.000]0.001{0.0030.004{0.010, 0.038 0.110] 0.343] 0.587] 0.985|
Number of nodes
A/O FC| i=0 11| 17| 32| 55| 166 3078 22273 204562 988136 4145934
i=3 11| 17] 32| 55| 155] 1503 8747 57778 236466 870866
i=6 11| 17| 32| 55| 148 975 4292 24542 95394 298234
i=10 11 17 32 55 135 746 2365 8646 15050 25717
Number of dead-ends

A/O FC| i=0 13| 19| 34| 57| 162 1978 10298 57678 134324 0
1=3 13 19 34 57| 159| 1662 8569 45336 92263 0
i=6 13 19 34 56| 149 974 3721 13655| 19257 0
i=10] 13| 19| 34| 55] 125 533 1312] 2313 1887 0

8.1 Languages Combining Logic and Probability

Combining probabilistic information and first-order lodias been a long-standing goal
in Al. This problem has been under intense investigationeitent years, especially be-
cause of its relevance to statistical relational learnigst of the early approaches to
combining first-order logic and Bayesian networks focusedestricted subsets such as
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Horn clauses as the basic representation [Wellman et &j¥@sliman, Breese, and Gold-
man, Poole(1993), Ngo and Haddawy(1997)]. As a result, drieeomain limitations was
the combinatorial blowup of the these models. A significampriovement was achieved
in [Koller and Pfeffer(1998)], where frame-based représton systems are combined with
Bayesian networks. This approach allows frame knowledged# be annotated with prob-
abilistic information, making them more suitable to reafld applications.

Markov logic networks [Richardson and Domingos(2006)] iseseent approach that
combines first-order logic and probabilistic graphical migdy attaching a weight to each
formula of a knowledge base. Another recently introducetinfdism is Bayesian logic
(BLOG) [Milch et al(2005)Milch, Marthi, Sontag, Russelln@, and Kolobov]. BLOG is
a first-order probabilistic modeling language that comlyaantd intuitively defines proba-
bility distributions over configurations of varying setsatfjects. Its purpose is to provide a
language for models that handle objects that are not knowiod.p

8.2 Computational Aspects

When processing Bayesian networks that contain determiigmely, CPTs with zero
probability tuples), an important aspect is the encodinghef determinism in the func-
tion representation. As we described earlier in the paparlat of determinism is present,
it may be beneficial to represent the functions in relatidoain as lists of valid tuples
[Larkin and Dechter(2003)]. Other structured functionresggntations, such as decision
trees [Boutilier et al(1996)Boutilier, Friedman, Goldsdimand Koller] or rule-based sys-
tems [Poole(1997)] are also possible, as we noted earlier.

Recursive conditioning (RC) [Darwiche(2001)] is an algfom that exploits the prob-
lem structure and traverses an AND/OR search space. InfAlled Darwiche(2003)],
RC was extended with unit resolution (based on the zChaff Sélver [Moskewicz
et al(2001)Moskewicz, Madigan, Zhao, Zhang, and Malik])eféectively deal with de-
terminism in Bayesian networks, especially for the domdigemetic linkage analysis. In
certain cases, this results in significant reduction of thieisg time. As we have already
mentioned, any SAT or constraint solver can be employed dogss the deterministic in-
formation.

Another algorithm similar to AND/OR and RC is Value Elimifat [Bacchus
et al(2003)Bacchus, Dalmao, and Pitassi]. The key propefrtyalue Elimination is the
ability to handle dynamic variable orderings and cachimguianeously, while maintain-
ing in principle the same worst case complexity (i.e., exgial in the treewidth). This is
realized however through the use of hash tables, and sonstacwaccess assumptions are
necessary. The work of [Sang et al(2004)Sang, Bacchus, B€auiz, and Pitassi] com-
bines component caching (essentially formula caching if)S#ith clause learning and
shows that on many instances it improves over existing dhgos for #SAT by orders of
magnitude.

The presence of deterministic information hidden withirragabilistic model also in-
spired the idea of finding triangulations (or variable onaigs) that correspond to minimal
computation. Therefore, besides the structural inforomatf the primal graph, the deter-
minism can reveal that the inconsistent assignments doeeat to be enumerated in order
to process the probabilistic information. The work of [Bédstand Bilmes(2006)] shows that
large-clique triangulations can sometimes lead to smathenputational effort when pro-
cessing stochastic/deterministic graphical models. Aemecent investigation of the search
space size in the presence of determinism appears in [QtttDechter(2008)].
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The mixed network framework can facilitate compilationaithms, that transform
a graphical model into a single data structure that can captompactly probabilis-
tic and deterministic information. These include arithimetircuits [Darwiche(2002),
Chavira et al(May 2006)Chavira, Darwiche, and Jaeger]pgidistic decision graphs
[Jaeger(2004)] and AND/OR weighted decision diagrams @dstu and Dechter(2007)].
The mixed network that we introduced in this paper can be etkas a unifying framework
within which all the above mentioned approaches can beetuatid compared.

9 Discussion and Conclusion

We presented the framework ofixed networkghat combines belief and constraint net-
works. One primary benefit of this framework is semanticigtail his feature is essential
in modeling real life applications, an issue that we onlycteed upon in this paper via the
motivating examples. In particular we can view a belief r@twhaving a set of variables
instantiated (e.g., evidence) as a mixed network, by régauthe evidence set as a set of
constraints. The dm-separation which we presented extbeds-separation of pure belief
networks to the mixed network in a natural way, and providestarion for characterizing
the notion of minimal I-mapness. Proposition 2, which defithee equivalence of mixed net-
works, gives blessing for processing the deterministiorimiation separately by constraint
propagation methods, rather than incorporating it in pbdlig tables.

The second principal benefit of mixed networks is computatioThe mixed networks
invites the exploitation of probabilistic and determifdsnformation building upon their
respective strengths. Indeed, our theoretical and enapaitalysis showed how computation
can be improved both within variable elimination and seaneti demonstrated the impact
of constraint processing within each of these reasoningreek.

Lets discuss further the ability of variable eliminatiomgmared with search in exploit-
ing constraints alongside the probabilistic functionss tiften believed that search schemes
can be more effective in accommodating constraints thaiablar elimination. Indeed, if
the CPTs are expressed as full tables and if we have a protaeimgha significant amount
of determinism, inference-based schemes can be far lesstiedf. On the other hand if
the problem has very little determinism (i.e., the CPTs aarly positive and the con-
straint portion is very loose) brute-force table-basedkbtielimination is likely to be far
more efficient than search, assuming enough memory is al&iRoth of these cases were
demonstrated empirically when we compared the brute-BEEalgorithm with constraint-
exploiting AND/OR search (section 7) on tight and loose peots. If however the CPTs
are expressed in a sparse manner, and accompanied witerffzbcessing algorithms,
then in the presence of determinism variable eliminatiam,(Elim-Sparse, or even Elim-
CPE(i)) may be more efficient than search in some of the cisgsneral however they are
incomparable as explained earlier.

One should note that while determinism in search is exmlditg pruning the search
space, determinism in variable elimination can be exgdiecomputing tight functions. In
that case different choices of variable ordering can makeapproach better than the other.
For an elaborate comparison of variable elimination vs. AQR search see [Mateescu and
Dechter(2005)].

The relative advantages and the possible combination oflifferent algorithms pre-
sented here is left for future work. A wide variety of hybriggsch and inference algorithms
can be designed and they can also be adapted for approxioratitation.
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