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ABSTRACT
This paper proposes a non-intrusive automatic parallelization frame-
work for typeful and property-aware computer algebra systems.
Automatic parallelization remains a promising computer program
transformation for exploiting ubiquitous concurrency facilities avail-
able in modern computers. The framework uses semantics-based
static analysis to extract reductions in library components based on
algebraic properties. An early implementation shows up to 5 times
speed-up for library functions and homotopy-based polynomial sys-
tem solver. The general framework is applicable to algebraic com-
putation systems and programming languages with advanced type
systems that support user-defined axioms or annotation systems.

Categories and Subject Descriptors
I.1.3 [Symbolic and Algebraic Manipulation]: Languages and
Systems—Special-purpose algebraic systems; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Algorithms, Performance, Languages, Experimentation

Keywords
Automatic parallelization, computer algebra, user-defined axioms

1. INTRODUCTION
Concurrency offered by modern computers has the potential of

enabling efficient scientific computation. However, by and large,
development of scalable concurrent software remains a challenge.
Furthermore, manual modification of existing programs to benefit
from ubiquitous concurrency is just as elusive, left to a few highly
trained programmers. In this paper, we propose an automatic paral-
lelization framework for computer algebra systems that take prop-
erties of algebraic entities they manipulate seriously.

We previously reported [12] on the rich opportunity for paral-
lelization in algebraic libraries such as those of the AXIOM family
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systems. The intuition behind that work is that it is hard for a (well)
structured algebraic algorithm not to reflect, in one way or the other,
properties related to the entities it manipulates. Consequently, we
built a semantics-based static analysis tool with the goal of detect-
ing parallelizable reductions in algebraic libraries. In this paper, we
show how to effectively exploit those findings, leading to an auto-
matic parallelization framework.

The main thrust of this paper is a semantics-based source-to-
source transformation. The transformation replaces sequential par-
allelizable reductions with their parallelized versions. It does not
require the user to be an expert in parallel programming. Nor does
it require write-access to the input program fragment, much less
authorship. All that is needed is a description of algebraic proper-
ties of the input program fragment. The description language is an
extension [12] of the “category” subset of the Spad programming
language. For example, the content of a univariate polynomial with
integer coefficients P =

∑n
0 anX

n is the greatest common divisor
of all the polynomial coefficients. It can be computed with a simple
loop:

content(p: Polynomial(Integer)): Integer ==
coefs : List(Integer) := coefficients(p)
result : Integer := 0
for c in repeat
result := gcd(result, c)

return result

It is clear that this computation is a reduction of the monoid op-
erator gcd over the coefficients of P. That suggests a computa-
tion strategy where pairs of coefficients are evaluated concurrently,
and the results are themselves combined using the same divide-and-
conquer pattern. That computation strategy corresponds to the fol-
lowing program:

content(p: Polynomial(Integer)): Integer ==
coefs : List(Integer) := coefficients(p)
result := parallelLeftReduce(gcd, coefs, 0)
return result

where the function parallelLeftReduce performs reduction in
parallel. Notice that while the example uses a polynomial with in-
teger coefficients, all we need is a domain of computation where
GCD computation makes sense and is effective, The function gcd
remains a monoid operation, which we express in our extension to
Spad [12] as:

forall(S: GcdDomain)
assume MonoidOperator(S, gcd) with
neutralValue = 0$S

The name MonoidOperator designates a category constructor that
specifies what it means for an opetaor to be an monoid operator
over a domain:
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MonoidOperator(T: BasicType, op: (T, T) -> T): Category
== AssociativeOperator(T, op) with
neutralValue: T

The parameterized assumption statement instructs the reduction de-
tector of the program transformation framework that it can assume
(without having to conduct a proof) that gcd is a monoid operation
over any GCD domain.

The contributions of this paper include:

1. Specification and implementation of semantics-based program
analysis algorithms for detecting parallel reductions in user
library code (section 3). The detection is guided by user pro-
vided assumptions.

2. Specification and implementation of program transformation
algorithms for generating parallel reductions from the reduc-
tions identified in 1 (section 4).

3. Performance evaluation of our automatic parallelization frame-
work using multicore PC and cluster (section 6). Experimen-
tal results show up to 5 times speed-up for some programs
(section 6.3).

2. INTERNAL DATA STRUCTURES
The analysis and transformation algorithms operate on an inter-

nal representation (IR) of the user input program. The source code
is first elaborated to IR. The result of the parallelization phase is
translated back to Spad syntax, which is then compiled as if it was
the original program. The abstract syntax for a subset of the IR is
defined as follows:

name x
type τ ::= x(τ∗) | (τ∗)→ τ

constant c ::= Constant(x, τ)
expression e ::= Funcall(x, e∗, τ)

| Variable(x, τ)
| Assign(e, e)
| c | a

segment g ::= Segment(e, e, e)
unnamed function a ::= Lambda(Variable(x, τ)∗, s, τ)

statement s ::= e | s+

| Declare(x, τ)
| For(x, e, s)
| For(x, g, s)
| While(e, s)
| Return(e)
| If(e, s, s)

function f ::= FunDef(x,Variable(x, τ)∗, S, τ)

A function definition node carries a name, a list of parameters, a
definition body and a signature. A function call has an operator and
optional operands. An anonymous function is a function definition
without name. A variable is declared with its type. The iteration
range of a for-loop is a sequence represented by either a container
expression or an integer segment.

The reduction detection algorithms and the Ir manipulation algo-
rithms several internal operators:

• getIterationVariable: retrieves the iteration variable from a
for-loop.

• getIterationSequence: obtains the iteration sequence of a for-
loop.

• getLoopBody: retrieves the body of a for-loop.

• getOperator: obtains the operator of a function call.

• getOperands: returns the operand list of a function call.

• genAssign: constructs an assignment.

• genAnonymousFunction: creates a lambda expression.

• genFunCall: builds a function call.

Figure 1 shows the IR for the body of the iterative content func-
tion definition. Each IR node represents an expression. The di-

Assign
lhs

rhs

coefs:List(Integer)

coefficients:Polynomial(Integer)->List(Integer) 

For

p:Polynomial(Integer)

iterVar

iterRange

Assign
lhs

rhs

result:Integer

0:Integer 

c:Integer

coefs:List(Integer)

Assign
lhs

rhs

result:Integer

gcd:(Integer,Integer)-> Integer 

c:Integer result:Integer
Return

result:Integer

Figure 1: The internal representation of the content function
body

rected edges between nodes indicate the control flow in a program.
The undirected edges refer to the corresponding components of dif-
ferent IR nodes. The leaves of the IR nodes are expressions.

Type and user assumption information is used by the static anal-
ysis and program transformation algorithms. These information are
stored in environments defined as follows:

TypeEnv Γ ::= [ ] | (x 7→ τ), Γ
property p ::= [ ] | (x 7→ e), p
PropEnv E ::= [ ] | ((x, τ, τ) 7→ p), E

A type environment maps identifiers to their types. An entry of a
property environment is a collection of all properties attached to
an operator. Each entry in a property environment has an operator
name, a signature, a defining type, and a list of properties. Each
property maps a property name to a value. For instance, the prop-
erty (neutralValue, 1) means the property neutralValue has value 1.

3. REDUCTION DETECTION
The reduction detector looks for semigroup operators, and also

monoid operators. A reduction can be expressed as a accumulation
loop, or a library function call to reduce, or an application of the
built-in reduce operator. The detection algorithm is a semantics-
based static analysis performed in two steps: (1) properties collec-
tion; followed by (2) reduction extraction. We summarize the algo-
rithm for detecting accumulation loops in this section. Algorithms
for detecting reduce call and built-in reduce operator are simpler.
More in-depth discussion may be found in our previous work [12].

The detector first examines every user written assumption. The
purpose is to derive all the algebraic properties attached to the op-
erators. The derivation instantiates property categories according to
a specific assumption. Algebraic property information is collected
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via the transitive closure of the instantiated categories. Consider the
user assumption in section 1. Category MonoidOperator has two
ancestor categories AssociativeOperator and MagmaOperator:

MagmaOperator(T: BasicType, op: (T,T) -> T): Category
== Type

AssociativeOperator(T: BasicType,op: (T,T)->T): Category
== MagmaOperator(T,op) with
associativity:
rule forall(a:T, b: T, c: T)

op(a,op(b,c)) == op(op(a,b),c)

The definition of MagmaOperator means a binary operation on a
domain satisfies the magma operator property. The Associative-
Operator category contains a logical statement of the property
that an operator is associative if it is a magma operator and fol-
lows the associativity rule. Category MonoidOperator is instanti-
ated with type Polynomial Integer and operator gcd. Variable
neutralValue is given value polynomial 0. The instantiated cat-
egory has two ancestor categories AssociativeOperator(Poly-
nomial Integer,gcd) and MagmaOperator(Polynomial In-
teger,gcd). Therefore, the operator gcd carries all the prop-
erties of MonoidOperator, AssociativeOperator and Magma-
Operator. At reduction extraction, the detector traverses the IR for
the input source program. The extraction algorithm matches each
IR node against the predefined parallel reduction patterns.

3.1 Detecting accumulation loop
One way for writing a reduction is to use an accumulation loop.

The pattern of an accumulation loop is defined as a single for-loop
of the following recognizable form:

for i in l repeat s+

Variable i is the iteration variable of the loop, and l is a sequence.
A new value from the sequence is yield at each iteration. The body
of the loop is a sequence of statements s+. Each statement s is an
assignment a. An assignment a is of the form v := f(X, e1) or
v := f(e2, X). Variable v is an accumulation variable. An accu-
mulation variable has a linear occurrence on the right hand side of
the assignment, and does not appear in sequence l. For each ac-
cumulation assignment, the same binary operator f has to be used
consistently to accumulate values into v. The expression e is ar-
bitrary, but must not mention v. The expression X is either the
accumulation variable v, or of the form f(X1, e1) or f(e1, X1).

The pattern matching algorithm for accumulation loops is present
in Algorithm 1. We start by preprocessing the input loop. The
function simplify transforms an input loop using standard forward
subexpression substitution [13]. The purpose of this preprocessing
is to discover more “hidden” reductions. Consider the following
code fragments:

a := 0
for i in 1..10 repeat
r := i -- local
x := a -- local
a := x + r -- global

a := 0
for i in 1..10 repeat
a := a + i

the code on the left contains an accumulation loop. Without prepro-
cessing, the loop is rejected during pattern matching. The reason is
that the dependencies between each variable cause the violation of
the recognizable form restriction. The preprocessed loop on the
right is identified as an accumulation loop.

Each statement in an input loop is matched against the pattern
of an accumulation assignment. This functionality is implemented

Algorithm 1 isParallelAccumLoop?(l: Loop,E: PropEnv, Γ : TypeEnv)
Require: l is an un-nested for-loop with body containing only as-

signments or definitions, E is a property environment, Γ is a type
environment.
l ′ ← simplify(l)
v← getIterationVariable(l ′)
r← getIterationSequence(l ′)
b← getLoopBody(l ′)}
for s in b do

if not isAccumulationAssignment?(s) then
return false

for s in b do
v← getAccumulationVariable(s)
if dependsOn(r, v) then

return false
for s ′ in b − {s} do

if dependsOn(s ′, v) then
return false

for s in b do
op← getAccumulationOperator(s)
if associative?(op, Γ, E) = unknown then

return unknown
return true

by the operator isAccumulationAssignment?. If each statement is
an accumulation assignment, we continue checking that for each
accumulation variable v, the iteration sequence and other assign-
ments do not depend on v. The operator getAccumulationVariable
takes out the variable at the left hand side of an accumulation state-
ment. The operator getAccumulationOperator extracts the binary
operator used in an accumulation statement, and dependsOn tests
dependency between a statement and a variable, i.e., whether the
variable is read or written in the statement. Finally, the associativity
of the accumulation operator in each statement is checked against
user’s assumption. The function associative? searches the property
list of an accumulation operator for the associativity. If found, the
function returns true, otherwise it returns unknown.

4. PROGRAM TRANSFORMATIONS FOR
GENERATING PARALLEL REDUCTIONS

The transformation of an accumulation loop proceeds in several
steps. First, we transform the body of the loop into a functional
abstraction. This function computes the list of elements combined
in the loop. Then parallel reduction is generated for combining the
elements of the list. As an illustration, consider the following code
for computing the n-th harmonic number:

harmonic(n: NonNegativeInteger): Fraction(Integer) ==
h: Fraction(Integer) := 0
for k in 1..n repeat
h := h + 1/k

return h

The transformation results in the following code:

harmonic(n: NonNegativeInteger): Fraction(Integer) ==
h := parallelLeftReduce(+,_

parallelMap((G768) +-> 1/G768,_
[G769 for G769 in 1..n]),0)

return h

In this example, a list of integer fractions [1, 1/2, ..., 1/n]
are added to the accumulation variable h. In the transformed code,
the list is computed in parallel with the function parallelMap. The
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library function applies the unary function (G768) +-> 1/G768
to each element of the sequence [1..n] in the loop iterator. The
list is combined together by function parallelLeftReduce. The
function performs a left associative reduction in parallel.

To parallelize reduce call and built-in reduce operator, we replace
the reduce operator with parallel reduce function calls. Therefore,
the parallelizations require to use parallel mapping and parallel re-
duction in the generated code.

4.1 A library for parallel mapping and reduc-
tion

We developed a small but sufficient Spad package ParallelMap-
Reduce to provide the functionalities mentioned above. A package
in the Spad language is a collection of function definitions. The
interface of the package is shown below:

ParallelMapReduce(S:Type, R:Type):Public == Private where
Public == with
parallelMap : (S -> R, List S) -> List R
parallelRightReduce: ((S, R) -> R, List S, R) -> R
parallelLeftReduce: ((R, S) -> R, List S, R) -> R
...

The package exports three functions parallelMap, parallel-
RightReduce and parallelLeftReduce. The definition of the
package is parameterized by types S and R. The type parameter S is
the element type of the list taken by parallel mapping and reduction.
The type parameter R is the element type of the list returned by par-
allel mapping and the resultant type of the binary combination in
a reduction. The expression parallelMap(op, l) applies op to
the portions of l concurrently using threads. Functions parallel-
RightReduce and parallelLeftReduce are two parallel reduc-
tion operators. A parallel reduction takes a binary operator, a list
and the neutral element of the binary operator. The elements of l
are combined with the binary operator asynchronously. The func-
tion parallelRightReduce combines elements in a right associa-
tive way, i.e., the accumulation variable is the right operand of the
binary operator, and vice versa.

The input lists of parallel mapping and reduction are evenly split
according to the number of working tasks. For parallel mapping,
each task locally applies the same binary operator to the assigned
piece of the original input list. In parallel reduction, each task per-
forms sequential reduction on the assigned piece of the original in-
put list. The local results are combined using a sequential reduction
to produce the final result.

4.2 Transforming reductions
Different transformation algorithms are applied to reductions of

different forms.

4.2.1 Accumulation loop
The algorithm for transforming accumulation loops is present in

Algorithm 2. The correctness of the loop transformation is pro-
vided by the map-reduce programming model. Parallel mapping
computes intermediate results which are consumed by parallel re-
duction. The transformation is done only if the accumulation oper-
ator is associative.

An accumulation loop with accumulation assignments in the body
are first transformed to several accumulation loops. Each loop car-
ries only one accumulation assignment. This is achieved through
loop fission [2]. For instance, the loop on the left of the codes be-
low is transformed to the two loops on the right:

Algorithm 2 transformAccumLoop(l : Loop, E : PropEnv, Γ :
TypeEnv)
Require: l is an accumulation loop with one accumulation assign-

ment.
v← getIterationVariable(l)
s← getIterationSequence(l)
b← getLoopBody(l)
a← getAccumulationVariable(b)
f← getAccumulationOperator(b)
Let α1, α2, α3, α4 be fresh variables
let1 ← genLet(α1, s)
g← genAnonymousFunction(b, v)
θ2 ← genParallelMap(g, α1, Γ)
let2 ← genLet(α2, θ2)
id← getNeutralValue(f, E, Γ)
if leftAssociative?(b) then
θ3 ← genLeftParallelReduce(f, α2, id, Γ)

else
θ3 ← genRightParallelReduce(f, α2, id, Γ)

let3 ← genLet(α3, θ3)
θ4 ← genFunCall(f, [v, α3], Γ)
let4 ← genLet(v, θ4)
return forwardSubstitution([let1, let2, let3, let4])

x := 0
y := 1
for i in 1..10 repeat
x := x + i*i + i
y := y * i

x := 0
y := 1
for i in 1..10 repeat
x := x + i*i + i

for i in 1..10 repeat
y := y * i

An accumulation loop is then transformed to a sequence of four
assignments following Algorithm 2. The first assignment computes
the list of elements produced by the loop iterator. The right hand
side of the assignment is generated corresponding to iterators of
different forms:

α1 :=

{
e iterator: for v in e
[α0 for α0 in e1..e2] iterator: for v in e1..e2

We use αi to represent a fresh variable. Variable α1 is passed to the
next assignment. The right hand side of the next assignment calls
parallelMap operator:

α2 := parallelMap(g, α1),

operator g is an unary anonymous function. The mapping of g over
α1 returns a list. The value of each element in the list is combined
to the accumulation variable in the original accumulation loop. The
parallel mapping is generated by function genParallelMap.

The third assignment reduces the binary accumulation operator f
over the value of variable α2. The result is assigned to variable α3:

α3 :=

{
parallelRightReduce(f, α2, ci) for right reduction
parallelLeftReduce(f, α2, ci) for left reduction

parallel reduction should be chosen following the associativity used
in the original accumulation loop. The function leftAssociative? re-
turns true, if the reduction is left associative. The operator f is
given by function getAccumulationOperator. The constant ci is
the neutral element of operator f. The neutral value is obtained by
calling function getNeutralValue, which looks up the assumption
environment. The generations of function calls to the two paral-
lel reductions are done using functions genLeftParallelReduce and
genRightParallelReduce, respectively.
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The last assignment combines the value of α3 to the accumula-
tion variable:

v := f(v, α3).

The accumulation variable v is extracted from the accumulation
loop via function getAccumulationVariable.

At the final step, we call subroutine forwardSubstitution over the
assignment sequence. The function implements forward expression
substitutions. This transformation simplifies the four generated as-
signments into an single assignment.

4.2.2 Library function call and built-in reduce form
The other two kinds of reduction are transformed using Algo-

rithm 3. Both reductions are function applications, using left as-

Algorithm 3 transformReduce(e : Funcall, E : PropEnv, Γ :
TypeEnv)
Require: e is a function application of reduce or the built-in re-

duce operator.
op← the operand of e which is a binary operator
s← the operand of e which is a sequence
id← getNeutralValue(op, E, Γ)
return genLeftParallelReduce(op, s, id, Γ)

sociative reductions by default. Therefore, the operators of these
reductions are simply replaced with parallelLeftReduce.

5. IMPLEMENTATION
The entire framework is implemented as a library in the Ope-

nAxiom computer algebra system. A graphical description of the
framework is shown in Figure 2.

5.1 Concurrency in OpenAxiom
The parallel mapping and reduction package is implemented us-

ing the concept of futures [10]. The interfaces of futures are follows:

Future(T: Type): Public == Private where
Public ==
future: (() -> T) -> %
get: % -> T
...

future(t) creates a future by taking in a function t. Function t
will be executed in the background. Type Future is parameterized
by type T. Variable T is the return type of function t. Once a future
value is created, t starts execution. get(f) retrieves the computed
value from future f. If the function wrapped by f terminates when
get is called, result will be returned immediately. Otherwise get
waits until the function finishes.

6. EXPERIMENTS
The automatic parallelization framework was tested in several

configurations, including a software regression test, a set of algebra
library functions, and a polynomial homotopy continuation pack-
age. We measured the performance of the sequential programs and
their parallelized versions on a desktop PC and a computation node
of the Brazos cluster [1]. Both machines use a GNU/Linux oper-
ating system. The tests were conducted wit an SBCL-based build
of the OpenAxiom system. The desktop PC has one Intel Core2
2.4GHz dual-core processor with 4GB memory. The cluster com-
putation node we used has two quad-core Intel Xeon E5420 2.5GHz
processors with 32GB memory. The sequential versions used as ref-
erences are the original source codes. Each sequential program is
parallelized using two, four and eight threads, respectively.

6.1 A software installation test
We started with parallelizing a software regression test which

takes long time to complete. There are five reduce calls in the test.
The first four compute simple algebraic extensions of lists of poly-
nomials. The last one multiplies a list of five univariate polynomials
of simple algebraic extension.

The sequential version took 684s to complete. The last reduc-
tion alone accounts for 646s. Since the last reduction only multi-
plies five polynomials, we only use two threads in parallelization.
The parallelized code takes 592s, which is improved by (only) 15%
comparing to the sequential version. The parallelized long running
reduction costs 527s which is 19% improvement over its sequential
version. For the first four reductions, it is unnecessary to generate
parallel codes which introduce overheads. To avoid this, we plan
an adaptive framework in the future which uses more analysis and
parallelize codes selectively.

6.2 Algebra library functions
We applied the framework to a set of 22 library functions. The

semantics of the functions is described in Table 1. Functions vdet,
Chebyshev1 and Chebyshev2 are implemented by us, and others
are from the algebra library shipped with the AXIOM system fam-
ily. All the functions are tested with randomly generated inputs.
Each of these functions directly or indirectly uses at least one re-
duction in any of the three forms. Figure 3 and Figure 4 show the
execution times of both the sequential and parallel versions of the
library functions on the desktop PC and cluster, respectively. The
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Figure 3: Execution times of library functions on the PC.

computed speed-ups are in Table 2.
The performance of a parallel reduction may be dominated by

the administrative cost of spawning threads amd collecting inter-
mediate results. Such cases include functions pdct, commonDenom,
listLcm on cluster, and symFunc, tanSum and coerce on both
machines. e.g., in the parallel reduction of pdct, the final com-
bination performs multiplications of large positive integers. The
reductions too respectively 15s (38% of total execution time), 23s
(65%) and 27s (79%) with two, four and eight threads on the cluster.
The speed-ups of pdct are better on the desktop PC. The reason is
that the large number multiplication is faster on desktop PC, which
makes the final combination step less dominant. For instance, Mul-
tiplying 4000-bit positive integers is 6 times faster on the desktop
machine than on the cluster node.
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Figure 2: The workflow of the automatic parallelization framework.

Function name Description
pdct pdct takes in a partition of form [a

n1
1 , ..., a

nk
k ], and computes

∏k
i=1 ni!a

ni
i .

graphs graphs(n) is the cycle index of the group induced on the edges of a graph by applying the symmetric function
to the n nodes.

complete complete(n) computes the cycle index of the symmetric group of degree n.
alternating alternating(n) computes the cycle index of the alternating group of degree n.
elementary elementary(n) computes the n-th elementary symmetric function expressed in terms of power sums.
wreath wreath(s1, s2) computes the cycle index of the wreath product of the two groups whose cycle indices are

s1 and s2.
symPolyMult multiplication between two symmetric polynomials.
symFunc symFunc takes in a list of elements [r1, ..., rn] of a ring. It returns the vector of the elementary symmetric

functions in the ri’s: [r1 + ... + rn, r1r2 + ... + rn−1rn, ..., r1r2...rn].
tanSum computes expansions of tangets of sums.
multinomial multinomial(n,[m1,m2,...,mk]) computes the multinomial coefficient n!/(m1!m2!...mk!)
factorial computes factorial n.
coerce creates a permutation from a list of cycles.
reducedSystem reducedSystem(A) returns a matrix B s.t. Ax = 0 and Bx = 0 have the same solutions in a ring.
commonDenom computes a common denominator for a list of fraction integers.
listLcm computes the least common multiply of a list of univariate polynomial integers.
harmonic harmonic(n) compute the n-th harmonic number.
lagrangeInterp computes the Largrange interpolation of a list of points.
XPolyMult multiplies two generalized polynomials whose coefficients are not required to form a commutative ring.
boundOfCauchy computes the Cauchy bound for the roots of the input polynomial.
Chebyshev1 evaluation of Chebyshev’s first function θ(x) = ln[

∏π(x)
i=1 pi], where pi is a prime, and π is the prime counting

function.
Chebyshev2 evaluation of Chebyshev’s second function ψ(x) = ln[lcm(1, 2, 3, ..., bxc)].
vdet vdet(m) computes the determinant for a Vandermonde matrix m.

Table 1: OpenAxiom library functions used in the experiments.
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Figure 4: Execution times of library functions on the cluster.

Better speed-ups are obtained for a reduction if its sequential ex-
ecution time increases rapidly with the size of the input list. Such
as the functions graphs, complete, alternating, elementary,
reducedSystem on both machines, and commonDenom on the desk-
top machine. Consider the super linear speed-ups of graphs. The
reduction in this case uses addition over symmetric polynomials to
sum elements in list of monomials. The addition operator first con-
verts the two input polynomials to their internal representation. The
internal representation is a list of monomials. The addition merges
the two lists together in a sorted order. In the sequential code, merg-
ing two lists in sorted order iteratively has quadratic complexity. In
the parallelized version, the monomial list obtained by each thread
is much shorter. The local merge sort performed by each thread sig-
nificantly saves the time as the execution time decreases quadrati-
cally when the input list becomes shorter. Moreover, the final com-
bination adds up polynomials returned by the threads. Since each
polynomial is a monomial list already in sorted order, this also sig-
nificantly saves the computation time.

The execution of a function may be accelerated both by direct
calls to parallel reductions functions, and by reductions present in
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Function name 2PC 4PC 8PC 2CL 4CL 8CL

pdct 1.26 2.02 2.98 1.64 1.852 1.89
graphs 2.56 5.88 9.14 3.33 8.29 15.32
complete 2.82 6.43 11.77 3.63 12.28 34.92
alternating 2.96 6.62 11.16 3.66 11.86 32.59
elementary 2.92 6.61 11.49 3.61 12.13 34.19
wreath 2.36 2.34 2.21 3.10 4.23 5.34
symPolyMult 1.20 1.50 1.70 1.48 2.57 3.19
symFunc 1.34 1.32 1.20 1.43 1.38 1.26
tanSum 1.35 1.28 1.28 1.41 1.41 1.32
multinomial 1.52 2.13 2.75 2.24 3.40 3.59
factorial 1.47 1.89 2.45 2.16 3.32 3.57
coerce 1.37 1.19 1.11 1.32 1.23 1.13
reducedSystem 2.92 5.16 6.62 3.67 9.22 12.21
commonDenom 2.55 3.84 5.53 1.13 1.23 1.13
listLcm 1.46 2.12 3.48 0.74 0.82 1.46
harmonic 1.20 1.17 1.06 1.46 2.71 3.83
lagrangeInterp 1.36 1.93 2.73 1.33 1.33 1.17
XPolyMult 1.82 2.32 2.67 1.97 2.65 2.89
boundOfCauchy 1.50 1.80 1.82 1.33 2.41 4.52
Chebyshev1 1.30 2.00 2.6 1.45 1.53 1.51
Chebyshev2 1.57 2.43 3.34 1.54 2.46 3.11
vdet 1.56 2.45 3.73 2.54 3.88 4.29

Table 2: Speed-ups of the parallelized library functions on the
PC and cluster with 2, 4 and 8 threads, respectively.

called functions. For instance, the function wreath contains a re-
duction using symmetric polynomial multiplication. The speed-ups
shown in the results come from two sources: the parallel reduction
itself, and the parallelized symmetric polynomial multiplication as
the binary reduction operator. The latter contributes in a more sig-
nificant way since multiplication is the most frequent computation
in function wreath.

6.3 An application: concurrent homotopy con-
tinuation

We also developed a sequential polynomial homotopy library for
solving polynomial systems. The parallelization framework is able
to parallelize the path-following part of the source code. The ho-
motopy library implements cheater’s homotopy [11]. Linear system
solving and evaluation in Newton’s method use functions provided
by OpenAxiom’s algebra library.

This application is inspired by a recent work of Verschelde and
Yoffe [18] on manually parallelizing various polynomial homotopy
methods. Following a solution path is a task that can be done in par-
allel. We measured the performance and computed the speed-ups
of the parallelized library on solving the 7-cyclic root problem. The
system has 924 solution paths [6, 5]. Results on the desktop PC and
the cluster node are shown in Table 3 and Table 4, respectively. On

Thread # Execution Time(s) Speedup(x)
Sequential 1370.47 1.00

2 727.82 1.88
4 790.19 1.73
8 778.32 1.76

Table 3: Performance of parallel homotopy continuations on
the PC.

Thread # Execution Time(s) Speedup(x)
Sequential 1586.06 1.00

2 805.20 1.97
4 491.85 3.22
8 314.76 5.04

Table 4: Performance of parallel homotopy continuations on
the cluster.

the desktop PC, we obtain good speed-up using two threads. We ob-
served that the performance does not scale with more threads. This
is due to contentions on limited computation resource. On the clus-
ter node, we obtained good speed up using two and four threads.
Speed up with eight threads is still far from ideal (8x). We believe
this is because our preliminary parallel mapping and reduction li-
brary does not support advanced workload balancing strategies such
as work-stealing, and thread pool. In the experiments where we use
8 threads, there are two threads which finish local computations
much earlier than others do. The early finished threads return and
exit instead of helping others to do more work.

7. RELATED WORK
The parallelization strategy presented in this paper is a map-

reduce model [8]. In this model, programs are expressed in a func-
tional style using a mapping followed by a reduction. Mapping and
reduction are then automatically parallelized.

Most automatic parallelizations frameworks use program analy-
sis, which are done at compile time, or at run time, or both. These
analysis mainly focus on determining the parallelizability of loops.
Static analysis such as GCD test [19] and Omega test [14] con-
vert loops into linear systems. Dependence information is com-
puted through linear system solving. Computation pattern match-
ing is another way of parallelizing codes with specific formats. For
instance, the range test [7] computes dependence information for
loops whose iteration bounds are symbolic non-linear expressions.
When the dependence information can not be determined at com-
pile time, e.g., the behavior of loops depends on the values com-
puted at run time, dynamic analysis is used to make decision at run
time. For instance, the work of Salz and Mirchandaney [17] records
the memory reference right before the execution of a loop. The in-
formation is used for computing dynamic dependence information.
More recently, the hybrid analysis [16] and the sensitivity analy-
sis [15] combine the information both from compile and run time,
which proves to be a more precise way for capturing dependence
information. The program analysis present in this paper is based
on semantics pattern matching at compile time. This is due to the
simple loop pattern used by reductions.

It is feasible to adapt our automatic parallelization framework
to work for algebraic systems using other programming languages
such as C++, Java and Aldor. One way to achieve the adaptation
is through a type system or an annotation system which is able to
provide algebraic semantic information from users. For instance,
in C++ properties can be defined using concepts [9]. Java pro-
grammers can use annotation to provide extra information before
declarations and definitions. Annotation in Java, however, must be
written before definitions and declarations. Therefore, the user has
to modify the original source code. By contrast, in our work, user
assumptions may be written separately from the source code. The
Fortress programming language [4] provides parallel execution by
default for implicit parallelizable structures. Furthermore, proper-
ties may be specified using traits. At some point, a draft [3] of
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Fortress specification allowed user-defined axioms. That capabil-
ity was removed from recent Fortress language specification [4],
and it does not seem to have even been implemented in released
versions. Therefore, we cannot offer tangible point of comparison
with Fortress.

8. CONCLUSION AND FUTURE WORK
We presented a set of algorithms and implementation of an auto-

matic parallelization framework. The framework parallelizes re-
ductions using algebraic semantics information in form of user-
provided axioms. Experimental results show that the framework
is capable of speeding up algebraic library functions as well as user
applications which contain parallel reductions.

In the future, we would like to implement workload balancing
such as work-stealing to improve the performance of parallel li-
braries. We plan on testing the framework with more real-world
applications. Being able to parallelize reductions is only a start. It
is important for us to support more implicit parallel structures e.g.
recursions and nested loops, as well as to integrate more advanced
automatic parallelization algorithms.
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