
ACM Communications in Computer Algebra, Vol. 45, No. 2, Issue 176, June 2011

An Automatic Parallelization Framework for OpenAxiom

Yue Li and Gabriel Dos Reis
Texas A&M University

College Station, USA, 77843-3112
{yli,gdr}@cse.tamu.edu

1 Introduction
This poster illustrates an automatic parallelization framework for the OpenAxiom [4] computer algebra
system. The objective is to help incidental users or non-expert algebraic library authors benefit from
implicit parallelization present in structured algebraic computations. The framework rewrites reductions
in algebraic libraries with their parallel versions. For instance, the planar curve formed by a given list of
points (x1, y1), . . . , (xn, yn) may be approximated with the Lagrange polynomial:

P =
n∑

i=1

yipi where pi =
∏

1≤j≤n,p 6=i

X − xj

xi − xj

Each polynomial pj can be computed using sequential nested loops. Our framework is able to transform
the sequential computation to its parallel version. The transformed version computes the denominator and
numerator of each term pi using a parallel reduction function, respectively. The list of the terms (X−xj) in
the numerator, and the terms (xi−xj) in the denominator are computed via calling a parallel map function.
The transformation relies on the fact that the multiplication operator over any field and the multiplication
operator over univariate polynomials are monoid operators, i.e., the operators are associative and each has
an identity element. In general, such algebraic properties are domain-specific knowledge and are difficult
to infer systematically. This framework provides linguistic support to express them directly in code:

forall(F:Field,P:UnivariatePolynomialCategory(F))
assume MonoidOperator(P, *) with
neutralValue = 1$P

forall(F: Field)
assume MonoidOperator(F, *) with
neutralValue = 1$F

The name MonoidOperator designates the category capturing the algebraic properties for monoid operators:

MonoidOperator(T: BasicType, op: (T, T) -> T): Category
== AssociativeOperator(T, op)

with neutralValue: T

The name neutralValue is a T-dependent constant denoting the identity element of a monoid operator.
The category AssociativeOperator defines the rules for associative operators. This shows that properties
can be composed out of existing ones.

2 An overview of the framework
The framework is implemented as an OpenAxiom library. The work flow of the framework is Figure 1. The
inputs include source code and user written assumptions. A semantics-based static analysis is performed
on the source code to identify potential reductions. In general, a reduction is written either as a loop, or

125

Vol. 45, No. 2, Issue 176, June 2011 ISSAC 2011 Posters

Source Code

Assumptions

Reduction Detector

Pattern Matching Associativity Checking

Algebraic Operator Categories

 Property Inference

Accumulation loops

Built-in reduce forms

Reduce calls

Loop Transformer

Expression Transformer

Parallel map-reduce library

Source code with
parallel reductions

Figure 1: The workflow of the automatic parallelization framework.

a reduction function call. For each potential reduction, the monoid properties of the candidate operator
is checked against user assumptions and other previously derived facts. The reductions which pass the
property checking are handed to a transformer. The transformer rewrites reductions with their parallel
versions provided by a parallel library.

3 Results
The framework has discovered rich parallelization opportunities implied by reductions in OpenAxiom al-
gebra library [1]. With the framework, we parallelized a software installation test, a set of OpenAxiom
algebra library functions, and a user application on homotopy continuation method [2]. The experiments
are run using a dual-core PC and a cluster. Results show that the framework speeds up the software instal-
lation test by 15%, the speed-up varies for different algebra library functions, and up to 5 times speed-up
is obtained for the user application. In addition to parallelizing iterative reductions, we also provide a pro-
totype implementation for parallelizing recursive reductions. A recursive reduction is first transformed to
its iterative version using the incrementalization based program transformation technique [3]. The iterative
reduction is further transformed to its parallel version using the transformation algorithms in the current
framework.

4 Acknowledgements
The authors thank the Texas A&M University Brazos HPC cluster for providing computing resources to
support the research reported here. This work was partially supported by NSF grant CCF-1035058.

References
[1] Y. Li and G. Dos Reis. A quantitative study of reductions in algebraic libraries. In PASCO ’10:

Proceedings of the 4th International Workshop on Parallel and Symbolic Computation, pages 98–104,
New York, NY, USA, 2010. ACM.

[2] Y. Li and G. Dos Reis. An automatic parallelization framework for algebraic computation systems. In
ISSAC ’11: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation,
2011. to appear.

[3] Y. A. Liu and S. D. Stoller. From recursion to iteration: what are the optimizations? In Proceedings of
the 2000 ACM SIGPLAN workshop on Partial evaluation and semantics-based program manipulation,
PEPM ’00, pages 73–82, New York, NY, USA, 1999. ACM.

[4] OpenAxiom. http://www.open-axiom.org, 2011.

126

